Data Engineering Essentials Hands-on - SQL, Python and Spark
- Offered byUDEMY
Data Engineering Essentials Hands-on - SQL, Python and Spark at UDEMY Overview
Duration | 46 hours |
Total fee | ₹999 |
Mode of learning | Online |
Schedule type | Self paced |
Difficulty level | Intermediate |
Official Website | Go to Website |
Credential | Certificate |
Data Engineering Essentials Hands-on - SQL, Python and Spark at UDEMY Highlights
- Earn a Certificate of completion from Udemy
- 30-Day Money-Back Guarantee
- Full lifetime access with this course
- Learn from 4 downloadable resources and 15 articles
Data Engineering Essentials Hands-on - SQL, Python and Spark at UDEMY Course details
- People from different backgrounds can aim to become Data Engineers. We cover most of the Data Engineering essentials for the aspirants who want to get into the IT field as Data Engineers as well as professionals who want to propel their career towards Data Engineering from legacy technologies.
- College students and entry-level professionals to get hands-on expertise with respect to Data Engineering. This course will provide enough skills to face interviews for entry-level data engineers.
- Experienced application developers to gain expertise related to Data Engineering.
- Conventional Data Warehouse Developers, ETL Developers, Database Developers, PL/SQL Developers to gain enough skills to transition to be successful Data Engineers.
- Testers to improve their testing capabilities related to Data Engineering applications.
- Any other hands-on IT Professional who wants to get knowledge about Data Engineering with Hands-On Practice.
- Setup Development Environment to learn building Data Engineering Applications on GCP
- Database Essentials for Data Engineering using Postgres
- Data Engineering Programming Essentials using Python
- Data Engineering using Spark Dataframe APIs (PySpark)
- Data Engineering using Spark SQL (PySpark and Spark SQL)
- Relevance of Spark Metastore and integration of Dataframes and Spark SQL
- Ability to build Data Engineering Pipelines using Spark leveraging Python as Programming Language
- Use of different file formats such as Parquet, JSON, CSV etc in building Data Engineering Pipelines
- Setup self support single node Hadoop and Spark Cluster to get enough practice on HDFS and YARN
- As part of this course, you will learn all the Data Engineering Essentials related to building Data Pipelines using SQL, Python as well as Spark.
- About Data Engineering
- Data Engineering is nothing but processing the data depending upon our downstream needs. We need to build different pipelines such as Batch Pipelines, Streaming Pipelines, etc as part of Data Engineering. All roles related to Data Processing are consolidated under Data Engineering. Conventionally, they are known as ETL Development, Data Warehouse Development, etc.
- Course Details
- As part of this course, you will be learning Data Engineering Essentials such as SQL, Programming using Python and Spark.
Data Engineering Essentials Hands-on - SQL, Python and Spark at UDEMY Curriculum
Data Engineering Labs - Python and SQL
You will start with setting up self-support Data Engineering Labs either on GCP or Cloud9 so that you can learn the key skills related to Data Engineering with a lot of practice leveraging tasks and exercises provided by us. As you pass the sections related to SQL and Python, you will also be guided to set up Hadoop and Spark Lab.
Provision GCP Server or AWS Cloud9 Instance
Setup Docker to host Postgres Database
Setup Postgres Database to practice SQL
Setup Jupyter Lab
Once Jupyter Lab is setup, you can upload the Jupyter Notebooks and start practicing all the key skills related to Data Engineering.
Database Essentials - SQL using Postgres
It is important for one to be proficient with SQL to take care of building data engineering pipelines. SQL is used for understanding the data, perform ad-hoc analysis, and also in building data engineering pipelines.
Getting Started with Postgres
Basic Database Operations (CRUD or Insert, Update, Delete)
Writing Basic SQL Queries (Filtering, Joins, and Aggregations)
Creating Tables and Indexes
Partitioning Tables and Indexes
Predefined Functions (String Manipulation, Date Manipulation, and other functions)
Writing Advanced SQL Queries
Programming Essentials using Python
Python is the most preferred programming language to develop data engineering applications. As part of several sections related to Python, you will be learning most of the important aspects of Python to build data engineering applications effectively.
Perform Database Operations
Getting Started with Python
Basic Programming Constructs
Predefined Functions
Overview of Collections - list and set
Overview of Collections - dict and tuple
Manipulating Collections using loops
Understanding Map Reduce Libraries
Overview of Pandas Libraries
Database Programming - CRUD Operations
Database Programming - Batch Operations
Setting up Single Node Data Engineering Cluster for Practice
The most common approach to build data engineering applications at scale is by using Spark integrated with HDFS and YARN. Before getting into data engineering using Spark and Hadoop, we need to set up an environment to practice data engineering using Spark. As part of this section, we will primarily focus on setting up a single node cluster to learn key skills related to data engineering using distributed frameworks such as Spark and Hadoop.
Setup Single Node Hadoop Cluster
Setup Hive and Spark on Single Node Cluster
Master required Hadoop Skills to build Data Engineering Applications
As part of this section, you will primarily focus on HDFS commands so that we can copy files into HDFS. The data copied into HDFS will be used as part of building data engineering pipelines using Spark and Hadoop with Python as Programming Language.
Overview of HDFS Commands
Data Engineering using Spark SQL
Let us, deep-dive into Spark SQL to understand how it can be used to build Data Engineering Pipelines. Spark with SQL will provide us the ability to leverage distributed computing capabilities of Spark coupled with easy-to-use developer-friendly SQL-style syntax.
Getting Started with Spark SQL
Basic Transformations
Managing Tables - Basic DDL and DML
Managing Tables - DML and Partitioning
Overview of Spark SQL Functions
Windowing Functions
Data Engineering using Spark Data Frame APIs
Spark Data Frame APIs are an alternative way of building Data Engineering applications at scale leveraging distributed computing capabilities of Spark. Data Engineers from application development backgrounds might prefer Data Frame APIs over Spark SQL to build Data Engineering applications.
Data Processing Overview
Processing Column Data
Basic Transformations - Filtering, Aggregations, and Sorting
Joining Data Sets
Windowing Functions - Aggregations, Ranking, and Analytic Functions
Spark Metastore Databases and Tables
Desired Audience for this Data Engineering Essentials course
People from different backgrounds can aim to become Data Engineers. We cover most of the Data Engineering essentials for the aspirants who want to get into the IT field as Data Engineers as well as professionals who want to propel their career towards Data Engineering from legacy technologies.
College students and entry-level professionals to get hands-on expertise with respect to Data Engineering. This course will provide enough skills to face interviews for entry-level data engineers.
Experienced application developers to gain expertise related to Data Engineering.
Conventional Data Warehouse Developers, ETL Developers, Database Developers, PL/SQL Developers to gain enough skills to transition to be successful Data Engineers.
Testers to improve their testing capabilities related to Data Engineering applications.
Any other hands-on IT Professional who wants to get knowledge about Data Engineering with Hands-On Practice.