Integrals: Overview, Questions, Preparation

NCERT Maths 12th 2023 ( Ncert Solutions Maths class 12th )

Salviya Antony

Salviya AntonySenior Executive - Content

Updated on Jun 7, 2024 10:53 IST

NCERT Solutions Maths Class 12 Chapter 7 Integrals are given on this page. Practicing the Chapter 7 Integrals Class 12 NCERT solutions will help students to improve their problem solving skills. We have provided step by step solutions of chapter 7 Maths Class 12 solutions of Integrals. Students can expect 2-3 questions from this chapter for entrance exams like JEE Main, JEE Advanced, etc. This chapter is highly important for the CBSE board exam and entrance exams. 

Integration is the inverse process of differentiation. Integration is also called anti differentiation. The integration is denoted by the symbol ‘ ∫ ’. The integral calculus is of two forms, known as Definite Integral and Indefinite Integral. In a definite integral, the range of the function is well defined, thus it gives a well-defined function. In an indefinite integral, the range of the function is not defined, thus the value of the function obtain is followed by a constant value ‘c.’ Check the NCERT Solutions Maths Class 12 Chapter 7 Integrals below.

Topics Covered in NCERT Maths Class 12 Integrals Chapter

  • Integration as an Inverse Process of Differentiation
  • Methods of Integration 
  • Integrals of Some Particular Functions 
  • Integration by Partial Fractions
  • Integration by Parts 
  • Definite Integral 
  • Fundamental Theorem of Calculus
  • Evaluation of Definite Integrals by Substitution 
  • Some Properties of Definite Integrals

NCERT Maths Class 12th Solution PDF - Integrals Chapter Download

Check the NCERT Solutions Maths Class 12 Chapter 7 Integrals below.

Download Here: NCERT Solution for Class XII Maths Integrals PDF

Integrals Solutions and FAQs

Ex.7.1

Find an anti-derivative (or integral) of the following functions by the method of inspection.

Q1.  s i n 2 x      

A.1.

d d x c o s 2 x = 2 s i n 2 x       s i n 2 x = 1 2 d d x ( c o s 2 x )         s i n 2 x     = d d x ( 1 2 c o s 2 x )

Therefore, an anti-derivative of  s i n 2 x       i s 1 2 c o s 2 x

Q2.  c o s 3 x

A.2.

d d x s i n 3 x = 3 c o s 3 x           c o s 3 x = 1 3 d x ( s i n 3 x )         c o s 3 x =   d d x ( 1 3 s i n 3 x )

Therefore, an anti-derivative of  c o s 3 x i s 1 3 s i n 3 x

Q3.  e 2 x

A.3.

d d x ( e 2 x ) = 2 e 2 x e 2 x = 1 2 d d x ( e 2 x ) e 2 x = d d x ( 1 2 e 2 x )

Therefore, an anti-derivative of  e 2 x i s 1 2 e 2 x

Q4.  ( a x + b ) 2

A.4.

d d x ( a x + b ) 3 = 3 a ( a x + b ) 2

( a x + b ) 2 = 1 3 a . a d x ( a x + b ) 3

( a x + b ) 2 = d d x ( 1 3 a ( a x + b ) 3 )

Therefore, an anti-derivative of  ( a x + b ) 3 i s 1 3 a ( a x + b ) 3  .

Q5.  s i n 2 x 4 e 3 x

A.5.

d d x ( 1 2 c o s 2 x 4 3 e 3 x ) = s i n 2 x 4 e 3 x

Therefore, an anti-derivative of  ( s i n 2 x 4 e 3 x ) i s 1 2 c o s 2 x 4 3 e 3 x

Find the following integrals in Exercises 6 to 20:

Q6.  ( 4 e 3 x + 1 ) d x

A.6.

  4 e 3 x d x + 1 d x 4 · e 3 x 3 + x + C

Q7.  x 2 ( 1 1 x 2 ) d x

A.7.

x 2 x 2 x 2 d x = x 2 1 d x = x 2 d x 1 d x

= x 3 3 x + C

Q8.  ( a x 2 + b x + c ) d x

A.8.

= a . x 2 . d x + b x . d x + c 1 . d x = a · x 3 3 + b x 2 2 + c x + d .

Q9.  ( 2 x 2 + e x ) d x

A.9.

2 x 2 + e x d x

= 2 · x 2 d x + e x d x = 2 · x 3 3 + e x + C

Q11.  x 3 + 5 x 2 4 x 2 d x

A.11.

( x 3 x 2 + 5 x 2 x 2 4 x 2 ) d x = ( x + 5 4 x 2 ) d x  

= x . d x + 5 d x 4 x 2 d x = x 2 2 + 5 x 4 x 2 + 1 2 + 1 = x 2 2 + 5 x 4 x 1 1 = x 2 2 + 5 x + 4 x + C

A.12.

= ( x 3 . x 1 / 2 + 3 x . x 1 / 2 + 4 . x 1 / 2 ) d x = ( x 5 / 2 + 3 x 1 / 2 + 4 x 1 / 2 ) d x = x 5 2 + 1 5 2 + 1 + 3 · x 1 / 2 + 1 1 2 + 1 + 4 · x 1 / 2 + 1 1 2 + 1 = x 7 / 2 7 / 2 + 3 · x 3 / 2 3 / 2 + 4 x 1 / 2 1 / 2 + C = 2 7 x 7 / 2 + 2 x 3 / 2 + 8 x 1 / 2 + C = 2 7 x 7 / 2 + 2 x 3 / 2 + 8√x + C .

Q13.  x 3 x 2 + x 1 x 1 d x

A.13.

x 3 x 2 x 1 + x 1 x 1 d x ( x 2 ( x 1 ) x 1 + 1 ) d x = ( x 2 + 1 ) d x  

= x 2 . d x + 1 . d x = x 3 3 + x + C

Q14.  ( 1 x )√x d x

A.14.

(√x x · x 1 / 2 ) d x (√x x 3 / 2 ) · d x x 1 / 2 · d x x 3 / 2 · d x x 3 / 2 3 / 2 x 5 / 2 5 / 2 + C 2 3 x 3 / 2 2 5 x 5 / 2 +  c

Q15.  ∫√x ( 3 x 2 + 2 x + 3 ) d x

A.15.

= ( 3 x 2 . x 1 / 2 + 2 x . x 1 / 2 + 3 x 1 / 2 ) . d z

= ( 3 x 5 / 2 + 2 x 3 / 2 + 3 x 4 / 2 ) . d x

= 3 x 5 / 2 . d x + 2 x 3 / 2 . d x + 3 x 1 / 2 . d x = 3 · x 7 / 2 7 / 2 + 2 · x 5 / 2 5 / 2 + 3 · x 3 / 2 3 / 2 + C = 6 · x 7 / 2 7 + 4 x 5 / 2 5 + 6 3 x 3 / 2 + C = 6 x 7 / 2 7 + 4 · x 5 / 2 5 + 2 x 3 / 2 + C .

Q.16.  ( 2 x 3 c o s x + e x ) d x

A.16.    = 2 x d x 3 c o s x + e x d x

= 2 x 2 2 3 s i n x + e x + C = x 2 3 s i n x + e x + C

Q.17.  ( 2 x 2 3 s i n x + 5√x ) d x

A.17.

= 2 x 2 . d x 3 s i n x . d x + 5√x d x = 2 x 3 3 + 3 c o s x + 5 x 3 / 2 3 2 + C = 2 x 3 3 + 3 c o s x + 1 0 x 3 / 2 3 + C

Q18.  s e c x ( s e c x + t a n x ) d x

A.18.

= ( s e c 2 x + s e c x t a n x ) d x

= s e c 2 x . d x + s e c x t a n x d x  

= t a n x + s e c x + C

Q19.  s e c 2 x c o s e c 2 x d x

A.19.

1 c o s 2 x 1 c o s 2 x d x = s i n 2 x c o s 2 x d x = t a n 2 x d x

= ( s e c 2 x 1 ) d x = s e c 2 x d x 1 . d x

= t a n x x + C

Q20.  2 3 s i n x c o s 2 x d x

A.20.

( 2 c o s 2 x 3 s i n x c o s 2 x ) d x = ( 2 s e c 2 x 3 t a n x . s e c x ) d x

= 2 s e c 2 x . d x 3 t a n x . s e c x . d x

= 2 t a n x   3   s e c x + C

Choose the correct answer in Exercises 21 and 22.

A.21.

x 3 / 2 3 2 + x 1 / 2 1 2 + C

= 2 3 x 3 / 2 + 2 x 1 / 2 +  ⸫ The correct Answer is (C)

Q.22.  d d x f ( x ) = 4 x 3 3 x 4 , f ( 2 ) = 0

A.22.

f ( x ) = 4 x 3 3 x 4 d x = 4 x 4 4 3 x 3 3 + C = x 4 + 1 x 3 + C

Now,  f ( 2 ) = 0   f ( 2 )   = 2 4 + 1 2 3 + C = 0

= 1 6 + 1 8 + c = 0 = c = ( 1 6 + 1 8 ) = c = 1 2 9 8

Therefore, correct answer is A.

Ex.7.2

Integrate the functions in Exercises 1 to 37:

Q1.  2 x 1 + x 2

1.

L e t , 1 + x 2 = t 2 x d x = d t I = 2 x 1 + x 2 d x = 1 d t t l o g | t | + c l o g | 1 + x 2 | + c

Q2.  ( l o g x ) 2 x

A.2.

L e t , l o g x = t 1 x d x = d t I = ( l o g x ) 2 x d x = t 2 d t = t 3 3 + C = ( l o g x ) 3 3 + C

Q3.  1 x + x l o g x

A.3.

1 x ( 1 + l o g x ) P u t , 1 + l o g x = t = 1 d x x = d t = I = 1 x + x l o g x d x = 1 t d t = l o g ( t ) + c = l o g ( 1 + l o g x ) + c

Q4.  s i n x s i n ( c o s x )

A.4.

Q5.  s i n ( a x + b ) c o s ( a x + b )

A.5.

= s i n ( a x + b ) c o s ( a x + b ) = 2 s i n ( a x + b ) c o s ( a x + b ) 2 = s i n 2 ( a x + b ) 2 P u t 2 ( a x + b ) = t 2 a d x = d t I = s i n 2 ( a x + b ) 2 d x = 1 2 s i n t d t 2 a = 1 4 a [ c o s t ] + C = 1 4 a c o s 2 ( a x + b ) + C

Q6. √ax + b

A.6.

P u t , a x + b = t a d x = d t d x = 1 a d t I = ( a x + b ) 1 2 d x = t 1 2 · 1 a d t = 1 a t 1 2 + 1 1 2 + 1 + C = 1 a t 3 2 3 2 + C = 2 3 a ( a x + b ) 3 2 + c

Q7.  x√x + 2

A.7.

P u t , x + 2 = t d x = d t x = t 2 I = x√x+2 d x = ( t 2 )  √t d t = ( t 1 + 3 2 2 t 1 2 ) d t = ( t 3 2 2 t 1 2 ) d t = t 3 2 · d t 2 · t 1 2 · d t = t 5 2 5 2 2 t 3 2 3 2 = 2 5 t 5 2 4 3 t 3 2 + C = 2 5 ( x + 2 ) 5 2 4 3 ( x + 2 ) 3 2 + C

A.8.

P u t , 1 + 2 x 2 = t d x 2 . 2 x = d t d x . 4 x = d t

A.10.

1 x −√x = 1 √x(√x 1 ) P u t ,√x 1 = t 1 2√x d x = d t I = 1 √x(√x 1 ) d x = 2 t d t = 2 l o g | t | + c = 2 l o g (√x 1 ) + c

Q12.  ( x 3 1 ) 1 3 x 5

A.12.

P u t , x 3 1 = t 3 x 2 d x = d t = I ( x 3 1 ) 1 3 x 5 d x = ( x 3 1 ) 1 3 · x 3 · x 2 · d x = t 1 3 ( t + 1 ) d t 3 = 1 3 ( t 4 3 + t 1 3 ) d t = 1 3 [ t 7 3 7 3 + t 4 / 3 4 3 ] + C = 1 3 [ 3 7 t 7 3 + 3 4 t 4 3 ] + C = 1 7 ( x 3 1 ) 7 3 + 1 4 ( x 3 1 ) 4 3 + C

Q13.  x 3 ( 2 + 3 x 3 ) 3

A.13.

P u t , 2 + 3 x 3 = t 9 x 2 d x = d t I = x 3 ( 2 + 3 x 3 ) 3 d x = 1 9 d t t 3 = 1 9 [ t 2 2 ] + C = 1 1 8 ( 1 t 2 ) + C = 1 1 8 ( 2 + 3 x 3 ) 2 + C

Q14.  1 x ( l o g x ) m , x > 0 , m 1

A.14.

P u t , l o g x = t 1 x d x = d t I = 1 x ( l o g x ) m d x = d t ( t ) m = ( t m + 1 1 m ) + C = ( l o g x ) m + 1 ( 1 m ) + C

Q15.  x 9 4 x 2

A.15.

P u t 9 4 x 2 = t 8 x d x = d t x d x = 1 8 d t 1 8 d t t = 1 8 l o g | t | + c = 1 8 l o g | 9 4 x 2 | + c

Q16.  e 2 x + 3

A.16.

P u t 2 x + 3 = t 2 d x = d t I = e 2 x + 3 d x = 1 2 e t · d t = 1 2 ( e t ) + C = 1 2 e ( 2 x + 3 ) + C

Q17.  x e x 2

A.17.

P u t x 2 = t 2 x d x = d t I = x e x 2 d x = 1 2 1 e t d t = 1 2 ( e t 1 ) + C = 1 2 e x 2 + C = 1 2 e x 2 + C

Q18.  e t a n 1 x 1 + x 2

A.18.

P u t t a n 1 x = t 1 d x 1 + x 2 = d t I = e t a n 1 x 1 + x 2 d x = e t d t = e t + c = e t a n 1 x + c

Q19.  e 2 x 1 e 2 x + 1

A.19. Dividing both numerator and denominator by ex, we get

e 2 x 1 e x e 2 x + 1 e x = e x e x e x + e x P u t e x + e x = t ( e x e x ) d x = d t I = e 2 x 1 e 2 x + 1 d x = e x e x e x + e x d x I = d t t = l o g | t | + c = l o g | e x + e x | + c

Q20.  e 2 x e 2 x e 2 x + e 2 x

A.20.

P u t e 2 x + e 2 x = t ( 2 e 2 x 2 e 2 x ) d x = d t

2 ( e 2 x e 2 x ) d x = d t I = e 2 x e 2 x e 2 x + e 2 x d x = d t 2 t = 1 2 1 t d t = 1 2 l o g | t | + = 1 2 l o g | e 2 x + e 2 x | +

Q21.  t a n 2 ( 2 x 3 )

A.21.

P u t 2 x 3 = t 2 d x = d t I = t a n 2 ( 2 x 3 ) d x = [ s e c 2 ( 2 x 3 ) 1 ] d x = 1 2 ( s e c 2 t ) d t 1 d x = 1 2 t a n t x + C = 1 2 t a n ( 2 x 3 ) x + C

Q22.  s e c 2 ( 7 4 x )

A.22.

P u t 7 4 x = t 4 d x = d t I = s e c 2 ( 7 4 x ) d x = 1 4 s e c 2 t d t = 1 4 ( t a n t ) + C

A.23.

 

 

Q24. 2 c o s x 3 s i n x 6 c o s x + 4 s i n x

A.24.

2 c o s x 3 s i n x 2 ( 3 c o s x + 2 s i n x ) P u t 3 c o s x + 2 s i n x = t ( 3 s i n x + 2 c o s x ) d x = d t = 2 c o s x 3 s i n x 6 c o s x + 4 s i n x d x = d t 2 t = 1 2 1 t d t = 1 2 l o g | t | + C = 1 2 l o g | 3 c o s x + 2 s i n x | + C .

Q25.  1 c o s 2 x ( 1 t a n x ) 2

A.25.

s e c 2 x ( 1 t a n x ) 2 P u t ( 1 t a n x ) = t s e c 2 x d x = d t I = s e c 2 x ( 1 t a n x ) 2 d x = d t t 2 = t 2 d t = 1 t + C = 1 1 t a n x + C

Q29.  c o t x l o g s i n x

A.29.

P u t l o g s i n x = t 1 s i n x · c o s x d x = d t c o t x d x = t x I = c o t x l o g s i n x d x = t d t = t 2 2 + C = ( l o g s i n x ) 2 2 + C

Q30.  s i n x 1 + c o s x

A.30.

P u t 1 + c o s x = t s i n x d x = d t I = s i n x 1 + c o s x d x = d t t = l o g | t | + c = l o g | 1 + c o s x | + c

Q31.  s i n x ( 1 + c o s x ) 2

A.31.

P u t 1 + c o s x = t s i n x d x = d t I = s i n x ( 1 + c o s x ) 2 d x = d t t 2 = t 2 d t = 1 t + C = 1 1 + c o s x + C

Q32.  1 1 + c o t x

A.32.

1 1 + c o s x s i n x · d x = 1 s i n x + c o s x s i n x d x = s i n x s i n + c o s x · d x = 1 2 2 s i n x s i n x + c o s x d x = 1 2 ( s i n x + c o s x ) + ( s i n x c o s x ) s i n x + c o s x d x = 1 2 1 · d x + 1 ( s i n x c o s x ) s i n x + c o s x d x = 1 2 1 · d x + 1 ( s i n x c o s x ) s i n x + c o s x d x = 1 2 ( x ) + 1 2 s i n x c o s x s i n x + c o s x d x P u t s i n x + c o s x = t ( c o s x s i n x ) d x = d t = x 2 + 1 2 d t t = x 2 1 2 l o g | t | + c = x 2 1 2 l o g | s i n x + c o s x | + c

Q33.  1 1 t a n x

A.33.

I = 1 1 t a n x d x = 1 1 s i n x c o s x d x = 1 c o s x s i n x c o s x d x = c o s x c o s x s i n x d x = 1 2 2 c o s x c o s x s i n x d x = 1 2 ( c o s x s i n x ) + ( c o s x + s i n x ) ( c o s x s i n x ) d x = 1 2 1 · d x + 1 2 c o s x + s i n x c o s x s i n x d x P u t c o s x s i n x = t ( s i n x c o s x ) d x = d t I = x 2 + 1 2 d t t = x 2 1 2 l o g | c o s x s i n x | + C

Q35.  ( 1 + l o g x ) 2 x

A.35.

P u t ( 1 + l o g x ) = t 1 x d x = d t I = ( 1 + l o g x ) 2 x d x = t 2 d t = t 3 3 + C ( 1 + l o g x ) 3 3 + C

Q36.  ( x + 1 ) ( x + l o g x ) 2 x

A.36.

I = ( x + 1 ) x ( x + l o g x ) 2 = ( 1 + 1 x ) ( x + l o g x ) 2 P u t x + l o g x = t 1 + 1 x d x = d t I = ( 1 + 1 x ) ( x + l o g x ) 2 d x = t 2 d t = t 3 3 + C = ( x + l o g x ) 3 3 + C

Q37.  x 3 s i n ( t a n 1 x 4 ) 1 + x 8

A.37.

P u t x 4 = t 4 x 3 d x = d t I = x 3 s i n ( t a n 1 x 4 ) 1 + x 8 d x = 1 4 s i n ( t a n 1 t ) 1 + t 2 _ _ _ _ _ ( 1 ) P u t t a n 1 t = u 1 1 + t 2 d t = d u

From (1), we get

I = x 3 s i n ( t a n 1 x 4 ) 1 + x 8 d x = 1 4 s i n u d u = 1 4 ( c o s u ) + C = 1 4 c o s ( t a n 1 t ) + C = 1 4 c o s ( t a n 1 x 4 ) + C

Choose the correct answer in Exercises 38 and 39.

Q38.  1 0 x 9 + 1 0 x l o g e 1 0 d x x 1 0 + 1 0 x

A.38.

P u t x 1 0 + 1 0 x = t ( 1 0 x 9 + 1 0 x l o g e 1 0 ) d x = d t I = 1 0 x 9 + 1 0 x l o g e 1 0 x 1 0 + 1 0 x d x = d t t = l o g t + C = l o g ( 1 0 x + x 1 0 ) + c

Therefore, the correct answer is (D)

Q39.  d x s i n 2 x c o s 2 x d x

A.39.

I = d x s i n 2 x c o s 2 x = 1 s i n 2 x c o s 2 x d x = s i n 2 x + c o s 2 x s i n 2 x c o s 2 x d x = s i n 2 x s i n 2 x c o s 2 x d x + c o s 2 x s i n 2 x c o s 2 x d x = s e c 2 x d x + c o s e c 2 x d x ] = t a n x c o t x + c

Therefore, the correct answer is B.

Ex. 7.3

Find the integrals of the functions in Exercises 1 to 22:

Q1.  s i n 2 ( 2 x + 5 )

A.1.

H e r e , s i n 2 ( 2 x + 5 ) = 1 c o s 2 ( 2 x + 5 ) 2 = 1 c o s ( 4 x + 1 0 ) 2 T h e n , = s i n 2 ( 2 x + 5 ) d x = 1 c o s ( 4 x + 1 0 ) 2 d x = 1 2 1 d x 1 2 c o s ( 4 x + 1 0 ) d x = 1 2 x 1 2 s i n ( 4 x + 1 0 ) 4 + C = x 2 1 8 s i n ( 4 x + 1 0 ) + C

Q2.  s i n 3 x . c o s x 4 x

A2.

H e r e , s i n A c o s B = 1 2 { s i n ( A+B ) + s i n (A −B ) } s i n 3 x c o s 4 x = 1 2 ( s i n ( 3 x + 4 x ) + s i n ( 3 x 4 x ) ) T h e n , s i n 3 x c o s 4 x d x = 1 2 [ s i n ( 3 x + 4 x ) + s i n ( 3 x 4 x ) d x = 1 2 s i n ( 3 x + 4 x ) + s i n ( 3 x 4 x ) d x = 1 2 s i n 7 x + s i n ( x ) d x = 1 2 [ c o s 7 x 7 + c o s x ] + c = c o s 7 x 1 4 + c o s x 2 + c

Q3.  c o s 2 x c o s 4 x c o s 6 x

A.3.

H e r e , c o s A c o s B = 1 2 { c o s ( A+ B) + c o s ( A− B) } I = c o s 2 x ( c o s 4 x c o s 6 x ) d x = c o s 2 x [ 1 2 c o s ( 4 x + 6 x ) + c o s ( 4 x 6 x ) ] d x = c o s 2 x [ 1 2 ( c o s 1 0 x + c o s ( 2 x ) ) ] d x = 1 2 c o s 2 x c o s 1 0 x + c o s 2 x c o s ( 2 x ) d x = 1 2 c o s 2 x c o s 1 0 x + c o s 2 x d x [ c o s ( x ) = c o s x ] = 1 2 [ 1 2 { c o s 2 x + 1 0 x + c o s 2 x 1 0 } + { 1 + c o s 4 x 2 } ] d x = 1 4 c o s 1 2 x + c o s 8 x + 1 + c o s 4 x d x = 1 4 [ s i n 1 2 x 1 2 + s i n 8 x 8 + x + c o s 4 x 4 x ] + C

Q4.  s i n 3 ( 2 x + 1 )

A.4.

I = s i n 3 ( 2 x + 1 ) d x = s i n 2 ( 2 x + 1 ) . s i n ( 2 x + 1 ) d x = { 1 c o s 2 ( 2 x + 1 ) } s i n ( 2 x + 1 ) d x P u t t i n g c o s ( 2 x + 1 ) = t 2 s i n ( 2 x + 1 ) d x = d t s i n ( 2 x + 1 ) d x = d t 2 I = 1 2 ( 1 t 2 ) d t = 1 2 { t t 3 3 } + C = 1 2 { c o s ( 2 x + 1 ) c o s 3 ( 2 x + 1 ) 3 3 } + C = c o s ( 2 x + 1 ) 2 + c o s 3 ( 2 x + 1 ) 6 6 + C = 1 2 c o s ( 2 x + 1 ) + 1 6 c o s 3 ( 2 x + 1 ) + C

Q5.  s i n 3 x c o s 3 x

A.5.

I = s i n 3 x c o s 3 x d x = c o s 3 x s i n 2 x s i n x . d x = c o s 3 x ( 1 c o s 2 x ) . s i n x d x P u t c o s x = t s i n . x . d x = d t I = t 3 ( 1 t 2 ) d t

= ( t 3 t 5 ) d t = { t 4 4 t 6 6 } + C = { c o s 4 x 4 c o s 6 x 6 } + C = c o s 4 x 4 + c o s 6 x 6 + C = 1 6 c o s 6 x 1 4 c o s 4 x + C

Q6.  s i n x s i n 2 x s i n 3 x

A.6.

H e r e , s i n A s i n B = 1 2 { c o s ( A+B ) c o s (A B) } I = s i n x s i n 2 x s i n 3 x = [ s i n x 1 2 { c o s ( 2 x 3 x ) c o s ( 2 x + 3 x ) } ] d x = { [ s i n x 1 2 { c o s ( x ) c o s 5 x } } d x = 1 2 s i n x c o s x s i n x c o s 5 x d x N o w , s i n 2 x = 2 s i n x c o s x , = 1 2 s i n 2 x 2 d x 1 2 s i n x c o s 5 x d x = 1 4 [ c o s 2 x 2 ] 1 2 1 2 s i n ( x + 5 x ) + s i n ( x 5 x ) d x = c o s 2 x 8 1 4 s i n 6 x + s i n ( 4 x ) d x = c o s 2 x 8 1 4 [ c o s 6 x 6 + c o s 4 x 4 ] + = c o s 2 x 8 1 8 [ c o s 6 x 3 + c o s 4 x 2 ] + = c o s 2 x 8 + c o s 6 x 2 4 c o s 4 x 1 6 + = 1 4 [ 1 6 c o s 6 x c o s 4 x 4 c o s 2 x 2 ] + .

Q7.  s i n 4 x s i n 8 x

A.7.

s i n A s i n B = 1 2 { c o s ( A+B ) c o s ( A−B ) } = s i n 4 x s i n 8 x d x = 1 2 { c o s ( 4 x 8 x ) c o s ( 4 x + 8 x ) } d x = 1 2 c o s ( 4 x ) c o s 1 2 x d x = 1 2 ( c o s 4 x c o s 1 2 x ) d x = 1 2 [ s i n 4 x 4 s i n 1 2 x 1 2 ] + C

Q8.  1 c o s x 1 + c o s x

A.8.

1 c o s x 1 + c o s x = 2 s i n 2 x 2 2 c o s 2 x 2 = t a n 2 x 2 = s e c 2 x 2 1 = 1 c o s x 1 + c o s x d x = ( s e c 2 x 2 1 ) d x = [ t a n x 2 1 2 ] + C = 2 t a n x 2 + C

Q9.  c o s x 1 + c o s x

A.9.

c o s x 1 + c o s x = c o s 2 x 2 s i n 2 x 2 2 c o s 2 x 2 = 1 2 [ 1 t a n 2 x 2 ] = c o s x 1 + c o s x d x = 1 2 ( 1 t a n 2 x 2 ) d x = 1 2 ( 1 s e c 2 x 2 + 1 ) d x = 1 2 ( 2 s e c 2 x 2 ) d x = 1 2 [ 2 x t a n x 2 1 2 ] + C = x t a n x 2 + C

Q10.  s i n 4 x

A.10.

s i n 4 x = s i n 2 x . s i n 2 x = ( 1 c o s 2 x 2 ) ( 1 c o s 2 x 2 ) = 1 4 ( 1 c o s 2 x ) 2 = 1 4 [ 1 + c o s 2 2 x 2 c o s 2 x ] = 1 4 [ 1 + ( 1 + c o s 4 x 2 ) 2 c o s 2 x ] = 1 4 [ 1 + 1 2 + 1 2 c o s 4 x 2 c o s 2 x ] = 1 4 [ 3 2 + 1 2 c o s 4 x 2 c o s 2 x ]

= s i n 4 x d x = 1 4 [ 3 2 + 1 2 c o s 4 x 2 c o s 2 x ] d x = 1 4 [ 3 2 + 1 2 ( s i n 4 x 4 ) 2 s i n 2 x 2 ] + C = 1 8 [ 3 x + s i n 4 x 4 2 s i n 2 x ] + C = 3 x 8 1 4 s i n 2 x + 1 3 2 s i n 4 x + C

Q11.  c o s 4 2 x

A.11.

 

Q12.  s i n 2 x 1 + c o s x

A.12.

s i n 2 x 1 + c o s x = ( 2 s i n x 2 c o s x 2 ) 2 2 c o s 2 x 2

= 4 s i n 2 x 2 c o s 2 x 2 2 c o s 2 x 2 = 2 s i n 2 x 2 2 = 1 c o s x = s i n 2 x 1 + c o s x d x = ( 1 c o s x ) d x = x s i n x + C

Q13.  c o s 2 x c o s 2 c o s x c o s

A.13.

= 4 c o s ( x + 2 ) c o s ( x 2 ) = 2 [ c o s ( x + 2 + x 2 ) + c o s ( x 2 x 2 ) =   2 [ c o s ( x )   +   c o s ] = 2 c o s x + 2 c o s = c o s 2 x c o s 2 c o s x c o s d x = ( 2 c o s x + 2 c o s ) d x

=   2 [ s i n x + x c o s ]   +   C

Q14.  c o s x s i n x 1 + s i n 2 x

A.14.

c o s x s i n x 1 + s i n 2 x = c o s x s i n x ( s i n 2 x + c o s 2 x ) + 2 s i n x c o s x = c o s x s i n x ( s i n x + c o s x ) 2 [ s i n 2 + c o s 2 = 1 & s i n 2 x = 2 s i n x c o s x ] I = c o s x s i n x 1 + s i n 2 x d x = c o s x s i n x ( s i n x + c o s x ) 2 d x P u t   s i n x +   c o s x = t

( c o s x s i n x ) d x = d t = d t t 2 = t 2 d t = t 1 + = 1 t + = 1 s i n x + c o s x +

Q15.  t a n 3 2 x . s e c 2 x

A.15.

t a n 3 2 x s e c   2 x =   t a n 2 2 x t a n   2 x s e c   2 x


 { s e c 2 ( 2 x ) 1 }   t a n   2 x s e c   2 x

=   s e c 2 2 x t a n   2 x s e c   2 x

t a n   2 x s e c   2 x

I   = t a n 3 2 x . s e c   2 x   d x

= t a n 2 2 x t a n   2 x s e c   2 x   d x t a n 2 x . s e c   2 x   d x = t a n 2 2 x t a n 2 x s e c 2 x d x s e c 2 x 2 + P u t   s e c   2 x = t

2 s e c   2 x t a n   2 x   d x = d t

I = t a n 3 2 x . s e c   2 x   d x = 1 2 t 2 d t s e c 2 x 2 + C = t 3 6 s e c 2 x 2 + C = ( s e c 2 x ) 3 6 s e c 2 x 2 + C

Q16.  t a n 4 x

A.16.

t a n 4 x = t a n 2 x t a n 2 x

= ( s e c 2 x 1 ) t a n 2 x

= s e c 2 x . t a n 2 x t a n 2 x

= s e c 2 x . t a n 2 x ( s e c 2 x 1 )

= s e c 2 x . t a n 2 x s e c 2 x + 1

  I = t a n 4 x d x = s e c 2 x . t a n 2 x d x s e c 2 x d x + 1 . d x

= s e c 2 x . t a n 2 x d x t a n π + x + C ( i )

L e t I = s e c 2 x . t a n 2 x d x

P u t t a n x = t

s e c 2 x d x = d t

I 1 = s e c 2 x . t a n 2 x d x

= t 2 d t

= t 3 3 = t a n 3 x

3 I = t a n 4 x d x

= 1 3 t a n 3 x t a n x + x + C

Q17.  s i n 3 x + c o s 3 x s i n 3 x c o s 3 x

A.17.

s i n 3 x + c o s 3 x s i n 2 x c o s 2 x = s i n 3 x s i n 2 x c o s 2 x + c o s 3 x s i n 2 x . c o s 2 x = s i n x c o s 2 x + c o s x s i n 2 x = t a n x s e c x + c o t x c o s e c x . = s i n 3 x + c o s 3 x s i n 2 x c o s 2 x d x = ( t a n x s e c x + c o t x c o s e c x ) d x

=   s e c x c o s e c x +   C

Q18.  c o s 2 x + 2 s i n 2 x c o s 2 x

A.18.

= c o s 2 x + ( 1 c o s 2 x ) c o s 2 x = 1 c o s 2 x = s e c 2 x = c o s 2 x + 2 s i n 2 x c o s 2 x d x = s e c 2 x d   x

=   t a n x +   C

Q19.  1 s i n x c o s 3 x

A.19.

s i n 2 x + c o s 2 x s i n x c o s 3 x = s i n x c o s 3 x + 1 s i n x c o s x = t a n x s e c 2 x + c o s 2 x ( s i n x c o s x c o s 2 x ) = t a n x s e c 2 x + s e c 2 x t a n x I = 1 s i n x c o s 3 x d x = t a n x s e c 2 x d x + s e c 2 x t a n x d x P u t   t a n x = t

S e c 2 x   d x = d t = 1 s i n x c o s 3 x d x = t a n x s e c 2 x d x + s e c 2 x t a n x d x = t d t + 1 d t t = t 2 2 + l o g | t | + C = 1 2 t a n 2 x + l o g | t a n x | + C

Q20.  c o s 2 x ( c o s x + s i n x ) 2

A.20.

= c o s 2 x c o s 2 x + s i n 2 x + 2 s i n x c o s x = c o s 2 x 1 + s i n 2 x

= c o s 2 x ( c o s x + s i n x ) 2 d x = c o s 2 x 1 + s i n 2 x d x P u t   1   +   s i n   2 x = t

2   c o s   2 x   d x = d t = c o s 2 x ( c o s x + s i n x ) 2 d x = 1 2 1 t d t = 1 2 l o g | t | + C = 1 2 l o g | 1 + s i n 2 x | + C 1 2 l o g | ( c o s x + s i n x ) 2 | + C = l o g | c o s x + s i n x | + C

Q21.  s i n 1 ( c o s x )

A.21.

I = s i n 1 ( c o s x ) d x = s i n 1 ( s i n { π 2 x } ) d x = { π 2 x } d x = π 2 x x 2 2 + C

Q22.  1 c o s ( x a ) c o s ( x b )

A.22.

1 c o s ( x a ) c o s ( x b ) = 1 s i n ( a b ) × [ s i n ( a b ) c o s ( x a ) c o s ( x b ) ] = 1 s i n ( a b ) [ s i n { ( x b ) ( x a ) } c o s ( x a ) c o s ( x b ) ]

= 1 s i n ( a b ) [ s i n ( x b ) c o s ( x a ) c o s ( x b ) s i n ( x a ) c o s ( x a ) c o s ( x b ) = 1 s i n ( a b ) [ t a n ( x b ) t a n ( x a ) ] = 1 s i n ( a b ) t a n ( x b ) t a n ( x a ) ] d x = 1 s i n ( a b ) [ l o g | c o s ( x b ) | + l o g | c o s ( x a ) ] = 1 s i n ( a b ) [ l o g | c o s ( x a ) c o s ( x b ) | ] + C

Q23.  s i n 2 x c o s 2 x s i n 2 c o s 2 x d x is equal to

A.23.

= s i n 2 x c o s 2 x s i n 2 c o s 2 x d x = ( s e c 2 x c o s e c 2 x ) d x

=   t a n x +   c o t x +   C .

T h e r e f o r e ,   t h e   c o r r e c t   a n s w e r   i s   ( A ) .

Q24.  e 2 ( 1 + x ) c o s 2 ( e 2 x )

A.24.

L e t e 2 x = t

e 2 x +   e x 1 d x = d t

e x ( x + 1 ) d x = d t = e x ( 1 + x ) c o s 2 ( e 2 x ) d x = d t c o s 2 t = s e c 2 t   d t               =   t a n   ( e x , x )   +   C

T h e   c o r r e c t   a n s w e r   i s   ( B ) .

Ex.7.4

Integrate the functions in Exercises 1 to 23.

Q1.  3 x 2 x 6 + 1

A.1.

L e t x 3 = t

3 x 2 d x = d t I = 3 x 2 x 6 + 1 d x = d t t 2 + 1 =   t a n 1 t + C  

=   t a n 1 ( x 3 )   + C

Q5.  3 x 1 + 2 x 4

A.5.

L e t√2 x 2 = t   2√2 x d x = d t I = 3 x 1 + 2 x 4 d x = 3 2√2 d t 1 + t 2 = 3 2√2 [ t a n 1 t ] + C = 3 2√2 [ t a n 1 (√2 x 2 ) ] + C

Q6.  x 2 1 x 6

A.6.

L e t x 3 = t

3 x 2 d x = d t I = x 2 1 x 6 d x = 1 3 d t 1 t 2 = 1 3 [ 1 2 l o g | 1 + t 1 t | ] + C = 1 6 l o g | 1 + x 3 1 x 3 | + C

Q11.  1 9 x 2 + 6 x + 5

A.11.

I = 1 9 x 2 + 6 x + 5 d x = 1 ( 3 x + 1 ) 2 + 2 2 L e t   ( 3 x + 1 )   = t

3 d x = d t I = 1 ( 3 x + 1 ) 2 + 2 2 d x = 1 3 1 t 2 + 2 2 d t = 1 3 [ 1 2 t a n 1 ( t 2 ) ] + C = 1 6 t a n 1 ( t 2 ) + C = 1 6 t a n 1 ( 3 x + 1 ) 2 ) + C

 

7 6 x x 2 = 7 ( x 2 + 6 x + 9 9 )

= 7 ( x 2 + 6 x + 9 ) + 9

= 1 6 ( x 2 + 6 x + 9 )  

= 1 6 ( x + 3 ) 2

= ( 4 2 ) ( x + 3 ) 2

 

= s i n 1 ( x 3 2 2 ) + = s i n 1 ( 2 x 3 ) + = s i n 1 ( 2 x 3 ) +

 

News & Updates

Latest NewsPopular News
qna

Ncert Solutions Maths class 12th Exam

Student Forum

chatAnything you would want to ask experts?
Write here...