NCERT Solutions Class 12 Maths Chapter 9 Differential Equations: Download Free PDFs, Formulas & Weightage

NCERT Maths 12th 2023 ( Maths Ncert Solutions class 12th )

nitesh singh
Updated on Jan 22, 2025 15:43 IST

By nitesh singh, Senior Executive

Class 12 Chapter 9 Differential Equations NCERT Solutions: Shiksha has compiled complete Class 12 Differential Equations NCERT solutions for students. This is the last chapter of the Class 12 calculus unit, in previous chapters students learned about finding derivatives of composite functions, inverse trigonometric functions, implicit functions, exponential functions and finding definite and indefinite integrals of various kinds of functions. Class 12 Math Chapter 9 Differential Equations deals with solution methods for first-, second-, and third-order differential equations and their application in some of the real word problems. 

Class 12 Math Differential Equations have good weight in both Class 12 boards and engineering entrance exam students and its concepts also have applications in many other different areas. Our experts in Shiksha have prepared a complete Application of Derivatives NCERT Solutions of NCERT Textbook. Students can download the complete Exercise-wise Differential Equations Class 12 NCERT solution PDF on this page.

Students either preparing for Boards or competitive exams like JEE Main, COMEDK, and more, can use Differential Equations NCERT Solution PDF to strengthen their concepts & better prep. Students must study the previous chapter of Class 12 Calculus to have a better understanding of the Differential Equations. Class 12 Chapter 5 Continuity and differentiability solutions work as a base to understand this chapter

Class 12 Differential Equations mainly deals with solutions, formation and Application of differential equations in many areas through examples.Shiksha has prepared the complete Class 11 Math chapter-wise Solutions and Class 12 Chapter-wise Math solutions to help students prepare. For more information check below;

Related Important Math Chapter Solutions
Class 12 Chapter 6 Application of Derivatives Class 12 Chapter 7 Integrals Class 12 Chapter 8 Application of Integrals
Table of content
  • Class 12 Math Chapter 9 Differential Equations: Key Topics, Weightage & Important Formulae
  • Class 12 Math Chapter 9 Differential Equations NCERT Solution PDF
  • Class 12 Differential Equations Exercise-wise Solution
  • Class 12 Differential Equations Exercise 9.1 Solution
  • Class 12 Differential Equations Exercise 9.2 Solution
  • Class 12 Differential Equations Exercise 9.3 Solution
  • Class 12 Differential Equations Exercise 9.4 Solution
  • Class 12 Differential Equations Exercise 9.5 Solution
  • Class 12 Differential Equations Exercise 9.6 Solution
  • Class 12 Differential Equations Miscellaneous Exercise Solution
  • Class 12 Math Preparation Tips and Recommended Books
View More
Maths Ncert Solutions class 12th Logo

Class 12 Math Chapter 9 Differential Equations: Key Topics, Weightage & Important Formulae

Class 12 Math Chapter 9 Differential Equations carry 7–9 marks in the CBSE Class 12 Board Exam, which includes a 2-mark question (VSA) related to Definitions, order, and degree, and 4-6 Marks question (LA) related to solving differential equations and application problems. Class 12 Differential Equations also hold good weight in JEE Main, which typically carries 4 –12 marks questions related to various concepts mentioned in the chapter. Students can check key topics and important formulae below;

Class 12 Differential Equations Key Topics

  • Basic Concepts such as Definition, order, degree, and general form of differential equations.
  • Formation of Differential Equations & Elimination of arbitrary constants from equations
  • Types: Ordinary and Partial Differential Equations
  • Solutions of Differential Equations: General solution and particular solution.
  • Methods of Solving Differential Equations: Variable Separation Method and more
  • Homogeneous and Linear Differential Equations
  • Applications: growth and decay-related problems based on mostly first and second-order derivative differential equations.

Check out Dropped Topics of Differential Equations – 9.4 Formation of Differential Equations Whose General Solution is Given, Example 25, Ques. 3, 5 and 15 (Miscellaneous Exercise), Point Six of the Summary.

Differential Equations Important Formulae for CBSE and Competitive Exams

Students can check the important formulae for CBSE and other engineering entrance exams such as JEE Main, CUSAT CAT, and more... below;

  • General Solution:

    y = f ( x ) d x + C y = \int f(x)dx + C
  • Variable Separation:

    1 g ( y ) d y = f ( x ) d x \int \frac{1}{g(y)}dy = \int f(x)dx
  • Linear Differential Equations:

    • General form: d y d x + P y = Q \frac{dy}{dx} + Py = Q
    • Solution form: y e P d x = Q e P d x d x + C
  • Homogeneous Equations:

    • Substitution: y = v x y = vx or x = v y x = vy
    • Simplified separable form: d y d x = f ( y x ) \frac{dy}{dx} = f\left(\frac{y}{x}\right)
  • Exact Differential Equations:

    • General form: M ( x , y ) d x + N ( x , y ) d y = 0 M(x, y)dx + N(x, y)dy = 0
    • Solution: M d x + ( N y ( M d x ) ) d y = C \int Mdx + \int \left(N - \frac{\partial}{\partial y} \left( \int Mdx \right)\right)dy = C
  • Exponential Growth/Decay Differential Equations: d y d t = k y Solution:  y = y 0 e k t
Maths Ncert Solutions class 12th Logo

Class 12 Math Chapter 9 Differential Equations NCERT Solution PDF

Shiksha has prepared solutions for the complete differential equations chapter in one solution PDF. Students can download the Class 12 Math Chapter 9 Differential Equations solution PDF for free. The Class 12 Maths Differential Equations NCERT Solution PDF can be very useful for all student boards as well as JEE Main, and other entrance exams. Download the Differential Equation Solution PDF for free;

Class 12 Math Chapter 9 Differential Equations Solution: Free PDF Download

Maths Ncert Solutions class 12th Logo

Class 12 Differential Equations Exercise-wise Solution

Class 12 Differential Equations is an important chapter, which consists of essential concepts of Calculus. Various exercises of Differential Equations deal with key concepts such as order and degree of a differential equation, formation of differential equations by eliminating arbitrary constants, and methods to solve them, including variable separation, homogeneous equations, and linear differential equations.  Shiksha provides exercise-wise solutions with step-by-step explanations, Students can take the help of solutions to master these concepts. Students can check the Exercise-wise Chapter 9 Differential Equation Class 12 math solutions here.

Maths Ncert Solutions class 12th Logo

Class 12 Differential Equations Exercise 9.1 Solution

Class 12 Differential Equations Exercise 9.1 focuses on Fundamental concepts such as understanding the order and degree of a differential equation, identifying differential equations from given relationships, and forming differential equations by eliminating arbitrary constants from given functions. Differential Equation Exercise 9.1 Solutions consists of 12 Questions. Students can check the complete Exercise 9.1 Solutions below;

Class 12 Chapter 9 Differential Equations Exercise 9.1 NCERT Solution

Determine order and degree (if defined) of differential equations given in Questions 1 to 10:

Q1.    d 4 y d x 4 + s i n ( y ' ) = 0

A.1. The highest order derivation present in the differential equation (D.E.) is  d 4 y d x 4  , so its order is 4.

As, the given D.E.is not a polynomial equation in its derivative ,its degree is not defined.

 

Q2. y' + 5y = 0

A.2. The highest order derivation present in the D.E. is y , so its order is 1.

As the given D.E. is a polynomial equation in its derivative its degree is 1.

 

Q3.  ( d s d t ) 4 + 3 s d 2 s d t 2 = 0

A.3. The highest order derivation present in the D.E. is  d 2 s d t 2  so its order is 2 .

As the given D.E. is a polynomial equation in its derivative its degree is 1.

 

Q4.  d 2 y ( d x 2 ) 2 + c o s ( d y d x ) = 0

A.4.  d 4 y d x 4  As the given D.E. is not a polynomial equation in its derivative, its degree is not defined.

 

Q5.    d 2 y d x 2 = c o s 3 x + s i n 3 x

A.5.  d 4 y d x 4  As the given D.E. is a polynomial equation in its derivative, its degree is 1.

 

Q6. (y′′′) + (y′′) + (y′)4 + y5 =0

A.6. The highest order derivative present in the D.E. is  y | | |  so its order is 3.

As the given D.E. is a polynomial equation in its derivation , its degree is 2.

 

Q7. y''' + 2y'' + y' = 0

A.7. The highest order present in the D.E. is  y | | |  so its order is 3.

As the given D.E. is a polynomial equation in its derivative, its degree is 1.

 

Q8. y′ + y = ex

A.8. The given order derivative present in the D.E. is  y |  so its order is 1.

As the given D.E. is a polynomial equation in its derivative, its degree is 1.

 

Q9. y'′ + (y')2  + 2y = 0

A.9. The highest order derivative present in the D.E. is  y | |  so its order is 2.

As the given D.E. is a polynomial equation in its derivative, its degree is 1.

 

Q10.  y'′ + 2y' + sin y = 0

A.10. The highest order derivative present in the D.E. is  y | |  so its order is 2.

As the given D.E. is polynomial equation in its derivative, its degree is 1.

Q11. The degree of the differential equation   ( d 2 y d x 2 ) 3 + ( d y d x ) 2 + s i n ( d y d x ) + 1 = 0   is:

(A) 3 

(B) 2 

(C) 1 

(D) Not defined

A.11. In the given D.E,

s i n d y d x  is a trigonometric function of derivative  d y d x  . So it is not a polynomial equation so its derivative is not defined.

Hence, Degree of the given D.E. is not defined.

 Option (D) is correct.

 

Q12. The order of the differential equation   2 x 2 d 2 y d x 2 3 d y d x + y = 0   is:

(A) 2 

(B) 1 

(C) 0 

(D) Not defined

A.12. The highest order derivative present in the given D.E. is  d 2 y d x 2  and its order is 2.

 Option (A) is correct.

Maths Ncert Solutions class 12th Logo

Class 12 Differential Equations Exercise 9.2 Solution

Differential Equations Exercise 9.2 of Class 12 Mathematics focuses on problems related to solving differential equations using the variable separation method. Students need to rewrite a given differential equation so that the variables x and are separated, in the form d y d x = f ( x ) g ( y ) \frac{dy}{dx} = f(x)g(y) , and followed by integration to find the solution. Differential Equations Exercise 9.2  Solutions will consist of explanations of 12 Questions. Students can check the complete Exercise 9.2 Solutions below;

Class 12 Chapter 9 Differential Equations Exercise 9.2 NCERT Solution

Note: In each of the Questions, 1 to 6 verifies that the given functions (explicit) is a solution of the corresponding differential equation:

Q1.  y = ex   + 1  :  y″ – y′ = 0

A.1. Given  f x n  is  y = e x + 1

Differentiating with  x  we get,

y | = d y d x = e x

Again,

y | | = d 2 y d x 2 = e x

Substituting value of  y | |  and  y |  in the given D.E. we get

L . H . S . = y | | y | = e x e x = 0 = R . H . S

 The given  f x n  is a solution of the given D.E.

 

Q2. y = x2  + 2x + C  :  y′ – 2x – 2 = 0

A.2. Given ,  f x n  is  y = x 2 + 2 x + c

So,  y | = 2 x + 2

Substituting value of  y |  in the given D.E. we get,

L . H . S . = y | 2 x 2 = 2 x + 2 2 x 2 = 0 = R . H . S

 The given  f x n  is a solution of the given D.E.

 

Q3. y = cos x + C : y′ + sin x = 0

A.3. Given,  f x n  is  y = c o s x + c

So,  y | = s i n x

Putting the value of  y |  in the given D.E. we get,

L . H . S . = y | + s i n x = s i n x + s i n x = 0 = R . H . S

 The given  f x n  is a solution of the given D.E.

Q4.  y = √1 + x2 ; y/= x y 1 + x 2

 

Q5. y = Ax   :  xy′ = y (x ≠ 0)

A.5. Given,  y = A x :

So,  y | = A d x d x = A

Putting value of  y |  in L.H.S. of the given D.E.

L.H.S=  x y | = x A = A x = y  =R.H.S

 The given  f x n  is a solution of the given D.E.

 

A.6. Given,  y = x s i n x

So,  y | = x d d x s i n x + s i n x d x d x = x c o s x + s i n x

Now, L.H.S of the given D.E  = x y |

= x ( x c o s x + s i n x )

= x 2 c o s x + x s i n x

 
Q7. xy = log y + C :       

y ' = y 2 1 x y ( x y 1 )

A.7. Given,  x y = l o g y + c

Differentiate w.r.t. x we have

x d y d x + y d x d x = d d x l o g y + d d x C x d y d x + y = 1 y d y d x + 0 x d y d x 1 y d y d x = y d y d x [ x 1 y ] = y d y d x [ x y 1 y ] = y d y d x = y 2 x y 1 = ( 1 ) × y 2 ( 1 ) × ( x y 1 ) = y 2 1 x y y | = y 2 1 x y

Hence, y is a Solution of the given D.E

 

Q8. y – cos y = x :  (y sin y + cos y + x) y′ = y

A.8. Given  y c o s y = x

Differentiate w.r.t ‘x’ we get

d y d x ( s i n y ) d y d x = d x d x d y d x [ 1 + s i n y ] = 1 d y d x = 1 1 + s i n y = y |

So, L.H.S of given D.E  = ( y s i n y + c o s y + x ) y |

= ( y s i n y + c o s y + y c o s x ) [ 1 1 + s i n y ] = y ( 1 + s i n y ) ( 1 + s i n y ) = y = R . H . S

 The given  f x n  is a solution of the given D.E.

 

Q9. x + y = tan-1 y   :   y2y' + y+ 1 = 0

A.9. Given,  x + y = t a n 1 y

Differentiate with ‘x’ we get

1 + d y d x = 1 1 + y 2 d y d x = 1 + y | = 1 1 + y 2 y | = ( 1 + y | ) ( 1 + y 2 ) = y | = 1 + y 2 y | + y | + y 2 = y | = y 2 y | + y 2 + 1 = 0

 The given  f x n  is a solution of the given D.E

 

 

Q11. The number of arbitrary constants in the general solution of a differential equation of fourth order are:

(A) 0

(B) 2

(C) 3

(D) 4

A.11. The number of arbitrary constant is general solution of D.E of 4th order is four.

 Option (D) is correct.

 

Q12. The number of arbitrary constants in the particular solution of a differential equation of third order are:

(A) 3

(B) 2

(C) 1

(D) 0

A.12. In a particular solution, there are no arbitrary constant.

Hence, option (D) is correct.

Maths Ncert Solutions class 12th Logo

Class 12 Differential Equations Exercise 9.3 Solution

Class 12 Math Differential Equation Exercise 9.3 focuses on solving homogeneous differential equations. Homogeneous differential equations can be expressed in terms of a single variable by substituting y = v x y = vx or x = v y x = vy , and then solving it using integration. Differential Equations Exercise 9.3 Solutions are comprised of solutions of 12 Questions. Students can check the complete Exercise 9.3 Solutions below;

Class 12 Chapter 9 Differential Equations Exercise 9.3 NCERT Solution

Note: In each of the questions 1 to 5, form a differential equation representing the given family of curves by eliminating arbitrary constants a and b

Q1.  x a + y b = 1

A.1. Given: Equation of the family of curves   x a + y b = 1 . . . . . . . . . . ( i )

Differentiating both sides of the given equation with respect to x, we get:

1 a + 1 b d y d x = 0 1 a + 1 b y ' = 0

Again, differentiating both sides with respect to x, we get:

0 + 1 b y " = 0 1 b y " = 0 y " = 0

Hence, the required differential equation of the given curve is  y " = 0  .

 

Q2.  y 2 = a ( b 2 x 2 )

A.2. Given: Equation of the family of curves   y 2 = a ( b 2 x 2 )

Differentiating both sides with respect to x, we get:

2 y d y d x = a ( 2 x ) 2 y y ' = 2 a x y y ' = a x . . . . . . . . . . ( 1 )

Again, differentiating both sides with respect to x, we get:

y ' . y ' + y y " = a ( y ' ) 2 + y y " = a . . . . . . . . . . ( 2 )

Dividing equation (2) by equation (1), we get:

( y ' ) 2 + y y " y y ' = a a x x y y " + x ( y ' ) 2 y y " = 0

This is the required differential equation of the given curve.

 

Q3.  y = a e 3 x + b e 2 x

A.3. Given: Equation of the family of curves   y = a e 3 x + b e 2 x . . . . . . . . . . ( i )

Differentiating both sides with respect to x, we get:

y ' = 3 a e 3 x 2 b e 2 x . . . . . . . . . . ( i i )

Again, differentiating both sides with respect to x, we get:

y " = 9 a e 3 x 4 b e 2 x . . . . . . . . . . ( i i i )

Multiplying equation (i) with (ii) and then adding it to equation (ii), we get:

( 2 a e 3 x + 2 b e 2 x ) + ( 3 a e 3 x 2 b e 2 x ) = 2 y + y ' 5 a e 3 x = 2 y + y ' a e 3 x = 2 y + y ' 5

Now, multiplying equation (i) with (iii) and subtracting equation (ii) from it, we get:

( 3 a e 3 x + 2 b e 2 x ) ( 3 a e 3 x 2 b e 2 x ) = 3 y y ' 5 b e 2 x = 3 y y ' b e 2 x = 3 y y ' 5

Substituting the values of  a e 3 x  and  b e 2 x  in equation (iii), we get:

y " = 9 . ( 2 y y ' ) 5 + 4 ( 3 y y ' ) 5 y " = 1 8 y + 9 y ' 5 + 1 2 y 4 y ' 5 y " = 3 0 y + 5 y ' 5 y " = 6 y + y ' y " y ' 6 y = 0

This is the required differential equation of the given curve.

 

Q4.  y = e 2 x ( a + b x )

A.4. Given: Equation of the family of curves   y = e 2 x ( a + b x ) . . . . . . . . . . ( 1 )

Differentiating both sides with respect to x, we get:

y ' = 2 e 2 x ( a + b x ) + e 2 x . b y ' = e 2 x ( 2 a + 2 b x + b ) . . . . . . . . . . ( 2 )

Multiplying equation (1) with (2) and then subtracting it from equation (2), we get:

y ' 2 y = e 2 x ( 2 a + 2 b x + b ) e 2 x ( 2 a + 2 b x ) y ' 2 y = b e 2 x . . . . . . . . . . ( 3 )

Differentiating both sides with respect to x, we get:

y " 2 y ' = 2 b e 2 x . . . . . . . . . . ( 4 )

Dividing equation (4) by equation (3), we get:

y " 2 y ' y ' 2 y = 2 y " 2 y ' = 2 y ' 4 y y " 4 y ' + 4 y = 0

This is the required differential equation of the given curve.

 

Q5.  y = e x ( a c o s x + b s i n x )

A.5. Given: Equation of the family of curves  y = e x ( a c o s x + b s i n x ) . . . . . . . . . . ( i )

Differentiating both sides with respect to x, we get:

y ' = e x ( a c o s x + b s i n x ) + e x ( a c o s x + b s i n x ) y ' = e x [ ( a + b ) c o s x ( a b ) s i n x ] . . . . . . . . . . ( 2 )

Again, differentiating with respect to x, we get:

y " = e x [ ( a + b ) c o s x ( a b ) s i n x ] + e x [ ( a + b ) s i n x ( a b ) c o s x ] y " = e x [ 2 b c o s x 2 a s i n x ] y " = 2 e x ( b c o s x a s i n x ) y " 2 = e x ( b c o s x a s i n x ) . . . . . . . . . . ( 3 )

Adding equations (1) and (3), we get:

y + y " 2 = e x [ ( a + b ) c o s x ( a b ) s i n x ] y + y " 2 = y ' 2 y + y " = 2 y ' y " 2 y ' + 2 y = 0

This is the required differential equation of the given curve.

 

Q6. Form the differential equation of the family of circles touching the y-axis at the origin.

A.6. The centre of the circle touching the y-axis at origin lies on the x-axis.

Let (a, 0) be the centre of the circle.

Since it touches the y-axis at origin, its radius is a.

Now, the equation of the circle with centre (a, 0) and radius (a) is

( x a ) 2 + y 2 = a 2 . x 2 + y 2 = 2 a x . . . . . . . . . . ( 1 )

Differentiating equation (1) with respect to x, we get:

2 x + 2 y y ' = 2 a x + y y ' = a

Now, on substituting the value of a in equation (1), we get:

x 2 + y 2 = 2 ( x + y y ' ) x x 2 + y 2 = 2 x 2 + 2 x y y ' 2 x y y ' + x 2 = y 2

This is the required differential equation.

 

Q7. Find the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.

A.7. The equation of the parabola having the vertex at origin and the axis along the positive y-axis is:

x 2   = 4 a y

Differentiating equation (1) with respect to x, we get:

2 x = 4 a y '

Dividing equation (2) by equation (1), we get:

2 x x 2 = 4 a y ' 4 a y 2 x = y ' y x y ' = 2 y x y ' 2 y = 0

This is the required differential equation.

 

Q8. Form the differential equation of family of ellipse having foci on y-axis and centre at the origin.

A.8. The equation of the family of ellipses having foci on the y-axis and the centre at origin is as follows:

x 2 b 2 + y 2 a 2 = 1 . . . . . . . . . . ( 1 )

Differentiating equation (1) with respect to x, we get:

2 x b 2 + 2 y y ' b 2 = 0 x b 2 + y y ' a 2 . . . . . . . . . . ( 2 )

Again, differentiating with respect to x, we get:

1 b 2 + y ' . y ' + y . y " a 2 = 0 1 b 2 + 1 a 2 ( y ' 2 + y y " ) = 0 1 b 2 = 1 a 2 ( y ' 2 + y y " )

Substituting this value in equation (2), we get:

x [ 1 a 2 ( ( y ' ) 2 + y y " ) ] + y y " a 2 = 0 x ( y ' ) 2 x y y " + y y ' = 0 x y y " + x ( y ' ) 2 = 0

This is the required differential equation

 

Q9. Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.

A.9. The equation of the family of hyperbolas with the centre at origin and foci along the x-axis is:

x 2 a 2 + y 2 b 2 = 1 . . . . . . . . . . ( 1 )

Differentiating both sides of equation (1) with respect to x, we get:

2 x a 2 2 y y ' b 2 = 0 x a 2 y y ' b 2 = 0 . . . . . . . . . . ( 2 )

Again, differentiating both sides with respect to x, we get:

1 a 2 y ' . y ' + y . y " b 2 = 0 1 a 2 + 1 b 2 ( ( y ' ) 2 + y y " ) = 0

Substituting the value of  1 a 2  in equation (2), we get:

x b 2 ( ( y ' ) 2 + y y " ) y y ' b 2 = 0 x ( y ' ) 2 + x y y " y y ' = 0 x y y " + x ( y ' ) 2 y y ' = 0

This is the required differential equation.

 

Q10. Form the differential equation of the family of circles having centres on y-axis and radius 3 units.

A.10. Let the centre of the circle on y-axis be (0, b).

The differential equation of the family of circles with centre at (0, b) and radius 3 is as follows:

x 2 + ( y b ) 2 = 3 2 x 2 + ( y b ) 2 = 9 . . . . . . . . . . ( 1 )

Differentiating equation (1) with respect to x, we get:

2 x + 2 ( y b ) . y ' = 0 ( y b ) . y ' = x y b = x y '

Substituting the value of  ( y b )  in equation (1), we get:

x 2 + ( x y ' ) 2 = 9 x 2 [ 1 + 1 ( y ' ) 2 ] = 9 x 2 ( ( y ' ) 2 + 1 ) = 9 ( y ' ) 2 ( x 2 9 ) ( y ' ) 2 + x 2 = 0

This is the required differential equation.

 

Q11. Which of the following differential equation has   y = c 1 e x + c 2 e x   as the general solution:

( A ) d 2 y d x 2 + y = 0 ( B ) d 2 y d x 2 y = 0 ( C ) d 2 y d x 2 + 1 = 0 ( D ) d 2 y d x 2 1 = 0

A.11. Given:  y = c 1 e x + c 2 e x . . . . . . . . . ( 1 )

Differentiating with respect to x, we get:

d y d x = c 1 e x c 2 e x

Again, differentiating with respect to x, we get:

d 2 y d x 2 = c 1 e x + c 2 e x d 2 y d x 2 = y d 2 y d x 2 y = 0

This is the required differential equation of the given equation of curve.

Hence, the correct answer is B.

 

Q12. Which of the following differential equations has y = x as one of its particular solutions:

( A ) d 2 y d x 2 x 2 d y d x + x y = x ( B ) d 2 y d x 2 + x d y d x + x y = x ( C ) d 2 y d x 2 x 2 d y d x + x y = 0 ( D ) d 2 y d x 2 + x d y d x + x y = 0

A12. The given equation of curve is   y   =   x  ..

Differentiating with respect to x, we get:

d y d x = 1   . . . . . . . . . . ( 1 )

Again, differentiating with respect to x, we get:

d 2 y d x 2 = 0 . . . . . . . . . . ( 2 )

Now, on substituting the values of y,  d 2 y d x 2  and  d y d x    from equation (1) and (2) in each of the given alternatives, we find that only the differential equation given in alternative C is correct

d 2 y d x 2 x 2 d y d x + x y = 0 x 2 . 1 + x . x = x 2 + x 2 = 0

Therefore, option (C) is correct.

Maths Ncert Solutions class 12th Logo

Class 12 Differential Equations Exercise 9.4 Solution

Differential Equations Exercise 9.4 deals with solving linear differential equations of various forms and different solution methods. Linear differential equations are of the form d y d x + P y = Q \frac{dy}{dx} + Py = Q , where P P and Q Q are functions of . Exercise 9.4 Solutions of Class 12 Differential Equation consists of a detailed solution of 23 Questions. Students can check the complete Exercise 9.4 Solutions below;

Class 12 Chapter 9 Differential Equations Exercise 9.4 NCERT Solution

For each of the following differential equations in Exercise 1 to 10, find the general solution:

Q1.  d y d x = 1 c o s x 1 + c o s x

A.1. The given D.E is

d y d x = 1 c o s x 1 + c o s x

By separable of variable,

d y = 1 c o s x 1 + c o s x d x { c o s 2 x = 1 2 s i n 2 x = 2 s i n 2 x = 1 c o s 2 x = 2 s i n 2 x 2 = 1 c o s x c o s 2 x = 2 c o s 2 x 1 } d y = 2 s i n 2 x 2 2 c o s 2 x 2 d x d y = t a n 2 x 2 d x

Integrating both sides,

d y = t a n 2 x 2 d x { s e c 2 x = 1 + t a n 2 } y = ( s e c 2 x 2 1 ) d x

y = t a n x 2 1 2 x + c  c = constant

y = 2 t a n x 2 x + c  is the general solution.

 

 

Q3.  d y d x + y = 1 ( y 1 )

A3. Given,  d y d x + y = 1

d y d x = 1 y = ( y 1 )

By separable of variable,

d y ( y 1 ) = d x

Integrating both sides,

d y ( y 1 ) = d x l o g | y 1 | = x + c | y 1 | = e x + c y 1 = ± e x . e c

y = 1 + A c  where  A = ± e c

Is the general solution.

 

Q4.  s e c 2 x t a n y d x + s e c 2 y t a n x d y = 0

A.4. Given,  s e c 2 x t a n y d x + s e c 2 y t a n x d y = 0

Dividing throughout by ‘  t a n x t a n y  ’ we get,

s e c 2 x t a n y t a n x t a n y d x + s e c 2 y t a n x t a n x t a n y d y = 0 s e c 2 x t a n x d x + s e c 2 y t a n y d y = 0

Integrating both sides we get,

s e c 2 x t a n x d x + s e c 2 y t a n y d y = l o g c l o g | t a n x | + l o g | t a n y | = l o g c { f | ( x ) f ( x ) d x l o g | f ( x ) | } l o g | ( t a n x + t a n y ) | = l o g c

t a n x t a n y = ± c  is the required general solution.

 

Q5.  ( e x + e x ) d y ( e x e x ) d x = 0

A.5. Given,  ( e x + e x ) d y ( e x e x ) d x = 0

( e x + e x ) d y = ( e x e x ) d x d y = e x e x e x + e x d x

Integrating both sides

d y = e x e x e x + e x d x { f | ( x ) f ( x ) d x = l o g | x | }

y = l o g | e x + e x | + c  is the required general solution.

 

Q6.  d y d x = ( 1 + x 2 ) ( 1 + y 2 )

A.6. Given,  d y d x = ( 1 + x 2 ) ( 1 + y 2 )

d y ( 1 + y 2 ) = ( 1 + x 2 ) d x

Integrating both sides

d y ( 1 + y 2 ) d y = ( x 2 + 1 ) d x t a n 1 y 1 = x 3 3 + x + c

t a n 1 y = x 3 3 + x + c  is the general solution.

 

Q7.  y l o g y d x x d y = 0

A.7. Given,  y l o g y d x x d y = 0

y l o g y d x = x d y d y y l o g y = d x x

Integration both sides,

d y y l o g y = d x x

Put log  y = t 1 y = d t d y d y y = d t

Hence,  d t t = d x x

l o g | t | = l o g | x | + l o g | c | = l o g | x c | t = ± x c

l o g y = a x  where  a = ± c

y = e a x  is the general solution.

 

Q8.  x 5 d y d x = y 5

A.8. Given,  x 5 d y d x = y 5

d y y 5 = d x x 5

Integrating both sides

d y y 5 = d x x 5 y 5 d y = x 5 d x

y 5 + 1 ( 5 + 1 ) = x 5 + 1 ( 5 + 1 ) + c 1 4 y 4 = 1 4 x 4 + c

1 y 4 = 1 x 4 + 4 c  is the general solution.

 

Q9.  d y d x = s i n 1 x

A.9. Given,  d y d x = s i n 1 x

d y = s i n 1 x d x

Integrating

 

Q.10.  e x t a n y d x + ( 1 e x ) s e c 2 y d y = 0

A.10. Given,  e x t a n y d x + ( 1 e x ) s e c 2 y d y = 0

Dividing throughout by  ( 1 e x ) t a n y  we get,

e x t a n y ( 1 e x ) t a n y d x + ( 1 e x ) s e c 2 y ( 1 e x ) t a n y d y = 0 = e x 1 e x d x + s e c 2 y t a n y d y = 0

Integrating both sides

= e x 1 e x d x + s e c 2 y t a n y d y = c l o g c = l o g | 1 e x | + l o g | t a n y | = c l o g c = l o g t a n y 1 e x = l o g c = t a n y 1 e x = c

= t a n y = ( 1 e x ) c  is the general solution.

 

For each of the differential equations in Question 11 to 12, find a particular solution satisfying the given condition:

Q11.  ( x 3 + x 2 + x + 1 ) d y d x = 2 x 2 + x

A.11. The given D.E is  ( x 3 + x 2 + x + 1 ) d y d x = 2 x 2 + x

d y = ( 2 x 2 + x x 3 + x 2 + x + 1 ) d x d y = 2 x 2 + x x 2 ( x + 1 ) + ( x + 1 ) d x = 2 x 2 + x ( x + 1 ) ( x 2 + 1 ) d x

Integrating both sides we get,

d y = 2 x 2 + x ( x + 1 ) ( x 2 + 1 ) d x

Let,  2 x 2 + x ( x + 1 ) ( x 2 + 1 ) = A x + 1 + B x + c x 2 + 1

2 x 2 + 2 = A ( x 2 + 1 ) + ( B x + c ) ( x + 1 ) = A x 2 + A + B x 2 + B x + C x + C = ( A + B ) x 2 + ( B + C ) x 2 + ( A + C )

Comparing the co-efficient we get,

A + B = 2 ( 1 ) B + C = 1 ( 2 ) A + C = 0 ( 3 )

Subtracting equation (1) – (2), we get

A + B ( B + C ) = 2 1 A C = 1

But from equation (3)  A = C  so, we get,

A ( C ) C = 1 2 C = 1 C = 1 2 & A = ( 1 2 ) = 1 2

And putting value of A in equation (1),

1 2 + B = 2 B = 2 1 2 = 4 1 2 = 3 2

Putting value of A,B and C in

2 x 2 + x ( x + 1 ) ( x 2 + 1 ) = 1 2 x + 1 + 3 2 x 1 2 x 2 + 1 = 1 2 ( x + 1 ) + 3 2 ( x x 2 + 1 ) 1 2 ( 1 x 2 + 1 )

Hence, the integration becomes

d y = 1 2 ( x + 1 ) d x + 3 4 ( 2 x x 2 + 1 ) d x 1 2 ( 1 x 2 + 1 ) d x y = 1 2 l o g ( x + 1 ) + 3 4 l o g ( x 2 + 1 ) 1 2 t a n 1 x 1 + c

Given, At  x = 0 , y = 1

Then,  1 = 1 2 l o g 1 + 3 4 l o g 1 1 2 t a n 1 ( 0 ) + C

1 = 0 + 0 0 + C { l o g 1 = 0 t a n 1 0 0 } c = 1

 The required particular solution is:

y = 1 2 l o g ( x + 1 ) + 3 4 l o g ( x 2 + 1 ) 1 2 t a n 1 x + 1 = 1 4 [ 2 l o g ( x + 1 ) + 3 l o g ( x 2 + 1 ) ] 1 2 t a n 1 x + 1 = 1 4 [ l o g ( x + 1 ) 2 + l o g ( x 2 + 1 ) 3 ] 1 2 t a n 1 x + 1 = 1 4 [ l o g ( x + 1 ) 2 ( x 2 + 1 ) 3 ] 1 2 t a n 1 x + 1

 

Q12.  x ( x 2 1 ) d y d x = 1 ; y = 0 w h e n x = 2

A.12. The given D.E. is

x ( x 2 1 ) d y d x = 1 d y = d x x ( x 2 1 )

Integrating both sides,

d y = d x x ( x 2 1 ) y = d x x ( x 2 1 ) ( x + 1 ) d x + c .

Let,  1 x ( x 1 ) ( x + 1 ) = A x + B x 1 + c x + 1

1 = A ( x 1 ) ( x + 1 ) + B ( x ) ( x + 1 ) + C ( x ) ( x 1 ) = A ( x 2 1 ) + B x 2 + B x + C x 2 C x = A x 2 A + B x 2 + B x + C x 2 C x = ( A + B + C ) x 2 + ( B C ) x A

Comparing the coefficient,

A = 1 A = 1 ( 1 ) A + B + C = 0 ( 2 ) B C = 0 B = C ( 3 )

Putting equation (1) & (2) in (1) we get,

1 + B + B = 0 1 + 2 B = 0 B = 1 2 = C

So,  1 x ( x 1 ) ( x + 1 ) = 1 x + 1 2 x 1 + 1 2 x + 1

= 1 x + 1 2 ( x 1 ) + 1 2 ( x + 1 )

Integrating becomes,

y = 1 x d x + 1 2 ( x 1 ) d x + 1 2 ( x + 1 ) d x + c = l o g ( x ) + 1 2 l o g ( x 1 ) + 1 2 l o g ( x + 1 ) + c = 1 2 [ 2 l o g ( x ) + l o g ( x 1 ) + l o g ( x + 1 ) ] + c = 1 2 [ l o g x 2 + l o g ( x + 1 ) ( x 1 ) ] + c = 1 2 l o g x 2 1 x 2 + c

Given,  y = 0 w h e n x = 2 .

Then,  0 = 1 2 l o g 2 2 1 2 2 + c

0 = 1 2 l o g 3 4 + c c = 1 2 l o g 3 4

 The required particular solution is

y = 1 2 l o g x 2 1 x 2 1 2 l o g 3 4

 

Q13.  c o s ( d x d y ) = a ( a R ) ; y = 1 w h e n x = 0

A13. Given, D.E. is

c o s d y d x = a d y d x = c o s 1 ( a ) d y = c o s 1 ( a ) d x

Integrating both sides,

d y = c o s 1 ( a ) d x y = c o s 1 ( a ) × x + c y = x c o s 1 ( a ) d x

Given,  y = 1 , a t x = 0

Then,  1 = 0 c o s 1 ( a ) + c

c = 1

 The required particular solution is

 

Q14.  d y d x = y t a n x ; y = 1 w h e n x = 0

A14. Given,  d y d x = y t a n x

d y y = t a n x d x

Integrating both sides we get,

d y y = t a n x d x l o g y = l o g | s e c x | + l o g c l o g y = l o g | c s e c x | y = c 1 s e c x ( w h e r e , c 1 = ± c )

As,  y = 1 , a t , x = 0  we have,

1 = c 1 s e c ( 0 ) = c c = 1

 The required particular solution is  y = s e c x  .

 

Q15. Find the equation of the curve passing through the point (0, 0) and whose differential equation is y' = ex sin x

A.15. The given D.E. is  y 1 = e x s i n x

d y = e x s i n x d x

Integrating both sides,

d y = e x s i n x d x y = I + c

Where,  I = e x s i n x d x

= s i n x e x d x d d x s i n x e x d x . d x = s i n x . e x c o s x e x d x = s i n x e x { c o s x e x d x d d x ( c o s x ) . I = e x x d x } = s i n x . e x { c o s x e x + s i n x e x d x } = s i n x . e x c o s x e x I I + I = e x ( s i n x c o s x ) I = e x 2 ( s i n x c o s x ) + c

Hence,  y = e x 2 ( s i n x c o s x ) + c

When the curve passed point (0,0),

y = 0 , a t , x = 0 0 = e x 2 ( s i n 0 c o s 0 ) + c e 0 2 ( 0 1 ) = c c = 1 2

 The required equation of the curve is  y = e x 2 ( s i n x c o s x ) + 1 2

2 y = e x ( s i n x c o s x ) + 1 2 y 1 = e x ( s i n x c o s x )

 

Q.16. For the differential equation   x y d y d x = ( x + 2 ) ( y + 2 )  find the solution curve passing through the point (1,-1)

A16.The Given D.E is

x y d y d x = ( x + 2 ) ( y + 2 ) y d y y + 2 = ( x + 2 ) 2 d x y + 2 2 y + 2 d y = ( x x + 2 x ) d x ( 1 2 y + 2 ) d y = ( 1 + 2 x ) d y d x

Integrating both sides,

( 1 2 y + 2 ) d y = ( 1 + 2 x ) d y d x y 2 l o g | y + 2 | = x + 2 l o g | x | + c y l o g ( y + 2 ) 2 = x + l o g x 2 + c y x = l o g ( y + 2 ) 2 + l o g x 2 + c y x = l o g [ ( y + 2 ) 2 . x 2 ] + c

A the curve passes through (-1,1) then  y = 2 , a t , x = 1

So,  1 1 = l o g ( 1 + 2 ) 2 . ( 1 ) 2 + c

2 = l o g 1 + c c = 2

 The required equation of curve is,

y x = l o g [ ( y + 2 ) 2 x 2 ] 2

 

Q.17 Find the equation of the curve passing through the point (0,-2) given that at any point (x,y) on the curve the product of the slope of its tangent and y-coordinate of the point is equal to the x-coordinate of the point.

A.17. The slope of the tangent to then curve is  d y d x

d y d x . y = x y . d y = x d x

So,

Integrating both sides,

y . d y = x d x y 2 2 = x 2 2 + c y 2 = x 2 + A , W h e r e , A = 2 c

As the curve passes through (0,-2) we have,

( 2 ) 2 = 0 2 + A A = 4

 The equation of the curve is

y 2 = x 2 + 4

 

Q18. At any point (x, y) of a curve, the slope of the tangent is twice the slope of the line segment joining the point of contact to the point (–4, –3). Find the equation of the curve given that it passes through (–2, 1).

A18. The slope of tangent is  d y d x  and slope of line joining line (-4,-3) and point say P(x,y)

y ( 3 ) x ( 4 ) = y + 3 x + 4

So,  d y d x = 2 ( y + 3 x + 4 )

d y y + 3 = 2 x + 4 d x

Integrating both sides,

d y y + 3 = 2 x + 4 d x l o g | y + 3 | = 2 l o g | x + 4 | + l o g | c | l o g | y + 3 | = l o g ( x + 4 ) 2 + l o g | c | l o g | y + 3 | = l o g | c ( x + 4 ) 2 | y + 3 = c 1 ( x + 4 ) 2 , w h e r e , c 1 = ± c

Since, the curve passes through (-2,1) we get,

y = 1 , a t , x = 2 1 + 3 = c ( 2 + 4 ) 2 4 = c × 4 c = 1

 The equation of the curve is  y + 3 = ( x + 4 ) 2

 

Q19. The volume of the spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of balloon after t seconds.

A.19. Let ‘r’ and U be the radius and volume of the spherical balloon.

Then,  d U d t = k ,  k = constant

d d t ( 4 3 π r 3 ) = k 4 π r 2 d r d t = k 4 π r 2 d r = k d t

Integrating both sides,

4 π r 2 d r = k d t 4 3 π r 3 = k t + c

Given at t = 0, r = 3

So, 4π(3)3 = c

C = 36π

And, at t=3, r=6

So,  4 3 π ( 6 ) 3 = 3 k + 3 6 π ( c = 3 6 π )

2 8 8 π 3 6 π = 3 k k = 2 5 2 π 3 = 8 4 π

Hence, putting value of c and k in,

4 3 π r 3 = k t + c  , we get,

4 3 π r 3 = 8 4 π . t + 3 6 π r 3 = 3 4 π ( 8 4 π . t + 3 6 π ) r 3 = 6 3 t + 2 7 r = [ 6 3 t + 2 7 ] 1 3

 

Q20. In a bank, principal increases continuously at the rate of r% per year. Find the value of r if Rs 100 doubles itself in 10 years (loge 2 = 0.6931).

A.20. Let P, r and t be the principal rate and time respectively.

Then, increase in principal  d P d t = P × r %

d P d t = P . r 1 0 0 d P P = r 1 0 0 d t

Integrating both sides,

d P P = r 1 0 0 d t l o g P = r t 1 0 0 + c P = e r t 1 0 0 + c

Given at t=0,P=100

So,  1 0 0 = e r × 0 1 0 0 + c

1 0 0 = e 0 × e c e c = 1 0 0 ( e 0 = 1 )

And at  t = 1 0 , P = 2 × 1 0 0 = 2 0 0

So,  2 0 0 = e r 1 0 1 0 0 + c

2 0 0 = e r 1 0 . e e e r 1 0 = 2 0 0 1 0 0 = 2

r 1 0 = l o g 2 r 1 0 = 0 . 6 9 3 1 r = 6 . 9 3 1

Hence, the rate is 6.931%

 

Q21.  In a bank, principal increases continuously at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years

(e0.5  = 1.645).

A.21. Let P and t the principal and time respectively.

Then, increase in principal  d P d t = P × 5 %

d P P = 5 1 0 0 d t

Integrating both sides,

d P P = 1 2 0 d t l o g P = t 2 0 + c P = e t 2 0 + c

At, t=0,P=1000

So,  1 0 0 0 = e 0 2 0 + c e c = 1 0 0 0

And at t=10,

P = e 1 0 1 0 0 + c = e 0 . 5 . e c P = 1 . 6 4 8 × 1 0 0 0 = 1 6 4 8

P = ₹1648

Q22. In a culture the bacteria count is 1,00,000. The number is increased by 10% in 2 hours. In how many hours will the count reach 2,00,000, if the rate of growth of bacteria is proportional to the number present.

A.22. Let ‘x’ be the number of bacteria present in instantaneous time t.

Then,  d x d t x

d x d t = k x , w h e r e , k =  constant of proportionality.

d x x = k d t

Integrating both sides,

d x x = k d t l o g x = k t + c

Given, at  t = 0 , x = x 0 ( s a y ) t h e n ,

l o g x 0 = c ( I n i t i a l , x 0 = 1 0 0 0 0 0 )

So, the differential equation is

l o g x = k t + l o g x 0 l o g x l o g x 0 = k t l o g x x 0 = k t

As the bacteria number increased by 10% in 2 hours.

The number of bacteria increased in 2hours  = 1 0 % × 1 0 0 0 0 0 = 1 0 0 0 0

Hence, at t=2,

x = 1 0 0 0 0 0 + 1 0 0 0 0 = 1 1 0 0 0 0

So,  l o g 1 1 0 0 0 0 1 0 0 0 0 0 = 2 k k = 1 2 l o g ( 1 1 1 0 )

Hence,  l o g x x 0 = [ 1 2 l o g 1 1 1 0 ] × t

w h e n , x = 2 0 0 0 0 0 ,  then we get,

l o g 2 0 0 0 0 0 1 0 0 0 0 0 = 1 2 l o g 1 1 1 0 × t

2 l o g 2 = l o g ( 1 1 1 0 ) × t t = 2 l o g 2 l o g ( 1 1 1 0 ) h o u r s

 

Q23. The general solution of the differential equation   d y d x = e x + y  is:

(A) ex + e-y = C

(B) ex + ey = C

(C) e-x + ey = C

(D) e x + e-y = C

A.23. The given D.E. is

d y d x = e x + y d y d x = e x . e y d y e y = e x d x

Integrating both sides,

d y e y = e x d x e y 1 = e x + c 1 e y = e x c 1 e y + e x = c , w h e r e , c = c 1

 Option (A) is correct.

Maths Ncert Solutions class 12th Logo

Class 12 Differential Equations Exercise 9.5 Solution

Class 12 Differential Equations Exercise 9.5 focuses on solving differential equations through applications in real-world scenarios. The key topics covered in Exercise 9.5 include solving problems related to growth and decay, and population models. Differential Equations Exercise 9.5 Solutions comprises 17 Questions. Students can check the complete Exercise 9.5 Solutions below;

Class 12 Chapter 9 Differential Equations Exercise 9.5 NCERT Solution

In each of the following Questions 1 to 5, show that the differential equation is homogenous and solve each of them:

Q1.  ( x 2 + x y ) d y = ( x 2 + y 2 ) d x

A.1. The given D.E. is

d y d x = x 2 + y 2 x 2 + x + y = x 2 ( 1 + y 2 x 2 ) x 2 ( 1 + y x ) = F ( x , y ) T h e n , F ( λ x , λ y ) = λ 2 x 2 λ 2 x 2 [ 1 + λ 2 y 2 λ 2 x 2 1 + λ y λ x ] = λ 0 F ( x , y ) = λ 2 F ( x , y )

Hence,  F ( x , y )  is a homogenous  f x n  of degree 2.

To solve it, let

y = v x , s o t h a t , d y d x = v . d x d x + x d v d x v = y x d y d x = v + x d v d x

The D.E. now becomes,

v + x d v d x = 1 + v 2 1 + v x d v d x = 1 + v 2 1 + v v = 1 + v 2 v v 2 1 + v = 1 v 1 + v ( 1 + v 1 v ) d v = d x x

Integrating both sides,

1 + v 1 v d v = d x x 1 + v 1 v d v = l o g x + c 2 ( 1 v ) 1 v d v = l o g x + c 2 1 v d v 1 d v = l o g x + c 2 l o g | 1 v | 1 v = l o g x + c l o g ( 1 v ) 2 + v = l o g x c

Put  v = y x ,

l o g ( 1 y x ) 2 + y 2 = l o g x + c l o g ( x y x ) 2 + l o g x = y x c

l o g [ ( x y x ) 2 × x ] = y x c x y x = e y x c = c 1 e y x c , w h e r e , c 1 e

( x y ) 2 = c 1 . x e y x  is the required solution of the D.E.

 

Q2.  y ' = x + y x

A.2. The given D.E. is

y 1 = x + y x = d y d x = 1 + y x = f ( y x )

Hence, the given D.E is homogenous.

Let,  y = v x y x = v , s o t h a t , d y d x = v + x d v d x

So, the D.E. becomes

v + x d v d x = 1 + v x d v d x = 1 d v = d x x

Integrating both sides,

d v = d x x v = l o g | x | + c

Putting  v = y x  back we get,

y x = l o g | x | + c

 

Q3.  ( x y ) d y ( x + y ) d x = 0

A.3. The Given D.E. is  ( x y ) d y ( x + y ) d x = 0

( x y ) d y = ( x + y ) d x d y d x = x + y x y = x ( 1 + y x ) x ( 1 y x ) = 1 + y x 1 y x = f ( y x )

Hence, the given D.E. is homogenous.

Let,  y = v x = y x = v , s o , d y d x = v + x d v d x  in the D.E

Then,  v + x d v d x = 1 + v 1 v x d v d x = 1 + v 1 v v = 1 + v 1 + v 2 1 v = 1 + v 2 1 v [ 1 v 1 + v 2 ] d v = d x x

Integrating both sides,

1 v 1 + v 2 d v = d x x 1 1 + v 2 d v 1 2 2 v 1 + v 2 d v = l o g x + c t a n 1 v 1 2 l o g ( 1 + v 2 ) = l o g x + c

Putting back  v = y x , w e g e t ,

= t a n 1 y x 1 2 l o g | 1 + y 2 x 2 | = l o g x + c = t a n 1 y x 1 2 l o g | x 2 + y 2 x 2 | = l o g x + c = t a n 1 y x 1 2 [ l o g ( x 2 + y 2 ) l o g x 2 ] = l o g x + c

= t a n 1 y x 1 2 l o g ( x 2 + y 2 ) + 1 2 l o g x 2 = l o g x + c = t a n 1 y x 1 2 l o g ( x 2 + y 2 ) + l o g ( x 2 ) 1 2 = l o g x + c = t a n 1 y x 1 2 l o g ( x 2 + y 2 ) + l o g x = l o g + c = t a n 1 y x = 1 2 l o g ( x 2 + y 2 ) + c

 

Q4.  ( x 2 y 2 ) d x + 2 x y d y = 0

A.4. The Given D.E. is

( x 2 y 2 ) d x + 2 x y d y = 0 2 × y d y = ( x 2 y 2 ) d x = d y d x = ( x 2 y 2 ) 2 x y = ( y 2 x 2 ) 2 x y = 1 2 ( y 2 x 2 x 2 ) ( x y x 2 ) = 1 2 [ ( y x ) 2 1 ] ( y x ) = f ( y x )

Hence, the given D.E. is homogenous.

Let,  y = v x y x = v , s o t h a t , d y d x = v + x d v d x  in the D.E

v + x d v d x = 1 2 [ v 2 1 v ] x d v d x = v 2 1 2 v v = v 2 1 2 v 2 2 v = 1 v 2 2 v ( 2 v 1 + v 2 ) d v = d x x

Integrating both sides we get,

Putting back  v = y x  we get,

x [ y 2 x 2 + 1 ] = c y 2 + x 2 x = c

y 2 + x 2 = x c  is the required solution.

 

Q5.  x 2 d y d x = x 2 2 y 2 + x y

A5. The given D.E. is

x 2 d y d x = x 2 2 y 2 + + x y d y d x = x 2 2 y 2 + + x y x 2 = 1 2 y 2 x 2 + y x d y d x = 1 2 ( y x ) 2 + y x = f ( y x )

Hence, the D.E. is homogenous  f x n

Let,  y = v x . = y x = v  so that,  d y d x = v + x d v d x  is the D.E.

Thus,  v + x d v d x = 1 2 v 2 + v

x d v d x = 1 2 v 2 d v 1 2 v 2 = d x x

Integrating both sides,

Integrating both sides,

 

Q7.  { x c o s ( y x ) + y s i n ( y x ) } y d x = { y s i n ( y x ) + x c o s ( y x ) } x d y

A.7. The given D.E is

{ x c o s ( y x ) + y s i n ( y x ) } y d x = { y s i n ( y x ) x c o s ( y x ) } x d y d y d x = { x c o s y x + y s i n y x } y { y s i n y x x c o s y x } x = x y c o s y x + y 2 s i n y x x y s i n y x x 2 c o s y x

y x c o s y x + ( y x ) 2 s i n y x ( y x ) s i n y x c o s y x  {Dividing numerator and denominator by  x 2  }

= f ( y x )

Hence, the given D.E is homogenous.

Let,  y = v x = y x = v  so that  d y d x = v + x d v d x  in the D.E.

Then,  v + x d v d x = v c o s v + v 2 s i n v v s i n v c o s v

x d v d x = v c o s v + v 2 s i n v v s i n v c o s v v = v c o s v + v 2 s i n v v 2 s i n v + v c o s v v s i n v c o s v v c o s v v s i n v c o s v ( v s i n v c o s v v c o s v ) d v = 2 d x x

Integrating both sides,

v s i n v c o s v v c o s v d v = 2 d x x t a n v d v 1 v d v = 2 l o g | x | + l o g | c | l o g | s e c v | l o g | v | = l o g x 2 + l o g c l o g | s e c v v | = l o g c x 2 s e c v v = c x 2 s e c v = c x 2 v

Putting back  v = y x = c x 2 y x = c x y

s e c y x = c x 2 y x = c x y 1 c o s y x = c x y 1 c = x y c o s y x

x y c o s y x = c 1  where  c 1 = 1 c  .

 

Q8.  x d y d x y = x s i n ( y x ) = 0

A.8. The given D.E. is  x d y d x y + x s i n ( y x ) = 0

x d y d x = y x s i n ( y x ) d y d x = y x s i n ( y x ) x = y x s i n y x = f ( y x )

Hence, the given D.E. is homogenous.

Let,  y = v x = y x = v  so that  d y d x = v + x d v d x  in the D.E.

Then,  v + x d v d x = v s i n v

x d v d x = s i n v d v s i n v = d x x c o s e c v d v = d x x

Integrating both sides we get,

c o s e c v d v = d x x l o g | c o s e c v c o t v | = l o g x + l o g c l o g | c o s e c v c o t v | = l o g c x c o s e c v c o t v = c x

Putting back  v = y x  we get,

c o s e c y x c o t y x = c x 1 s i n y x c o s y x s i n y x = c x

x [ 1 c o s y x ] = c s i n ( y x )  is the solution of the D.E.

 

Q9.  y d x = x l o g ( y x ) d y 2 x d y = 0

A.9. The given D.E is

y d x + x l o g ( y x ) . d y 2 x d y = 0 y d x = [ 2 x d y x l o g ( y x ) d y ] y d x = [ 2 x x l o g ( y x ) ] d y d y d x = y 2 x x l o g ( y x ) = y x ( 2 l o g y x ) = y x 2 l o g y x = f ( y x )

Hence, the given D.E is homogenous.

Let,  y = v x = y x = v  so that  d y d x = v + x d v d x  in the D.E.

Then,  v + x d v d x = v 2 l o g v

x d v d x = v 2 l o g v v = v 2 v + v l o g v 2 l o g v = v l o g v v 2 l o g v 2 l o g v v [ l o g v 1 ] d v = d x x 1 + 1 l o g v v [ l o g v 1 ] d v = d x x 1 [ l o g v 1 ] v [ l o g v 1 ] d v = d x x

[ 1 v ( l o g v 1 ) 1 v ] d v = d x x

Integrating both sides we get,

[ 1 v ( l o g v 1 ) 1 v ] d v = d x x d v v ( l o g v 1 ) l o g v = l o g x + l o g c

Let,  l o g v 1 = t , s o , d d v ( l o g v 1 ) = d t d v

1 v = d t d v d v v = d t d t t l o g v = l o g x + l o g c l o g t l o g v = l o g x + l o g c l o g | l o g v 1 | l o g v = l o g c x

Putting back  v = y x  we get,

l o g | l o g ( y x ) 1 | l o g y x = l o g c x = l o g [ l o g ( y x ) 1 y x ] = l o g c x = y x [ l o g ( y x ) 1 ] = c x

= l o g ( y x ) 1 = c y  is the required solution.

 

Q10.  ( 1 + e x y ) d x + e x y ( 1 x y ) d y = 0

A10. The given D.E. is

( 1 + e x y ) d x + e x y ( 1 x y ) d y = 0 ( 1 + e x y ) d x = e x y ( 1 x y ) d y d x d y = e x y ( 1 x y ) 1 + e x y = f ( x y )

Hence, the given D.E. is homogenous.

Let,  x = y v = y x  so that  d y d x = v + y d x d y  in the D.E.

Then,  v + y d v d y = e v ( 1 v ) 1 + e v

y d v d y = v e v e v 1 + e v v = v e v e v v v e v 1 + e v y d v d y = ( e v + v ) 1 + e v ( 1 + e v e v + v ) d v = d y y

Integrating both sides we get,

l o g | e v + v | = l o g | y | + l o g | c |

Putting back  v = x y  we get,

l o g | e x y + x y | = l o g | c y | = e x y + x y = c y

= x + y e x y = c  is the general solution.

 

For each of the differential equations in Questions from 11 to 15, find the particular solution satisfying the given condition

Q11. (x + y) dy + (x – y) dx = 0; y = 1 when x = 1

A.11. The given D.E. is

( x + y ) d y + ( x y ) d x = 0 = ( x + y ) d y = ( x y ) d x = d y d x = y x x + y = y x x x + y y = y x 1 1 + y x = f ( y x )

i.e, homogenous

Let,  y = v x = v = y x  so that  d y d x = v + y d y d x  in the D.E.

Then,  v + x d v d x = v 1 v + 1

= x d v d x = v 1 v + 1 v = v 1 v 2 v v + 1 = ( v 2 + 1 ) v + 1 = [ v + 1 v 2 + 1 ] d v = d x x

Integrating both sides,

v + 1 v 2 + 1 d v = d x x = 1 2 2 v v 2 + 1 d v + 1 v 2 + 1 d v = l o g x + c = l o g | v 2 + 1 | 2 + t a n 1 v = l o g x + c

Putting back  v = y x  we get,

= 1 2 l o g | y 2 x 2 + 1 | + t a n 1 y x = l o g x + c = 1 2 [ l o g ( y 2 + x 2 ) l o g x 2 ] + t a n 1 y x + l o g x = c = 1 2 l o g ( y 2 + x 2 ) 1 2 l o g x 2 + l o g x + t a n 1 y x = c = 1 2 l o g ( y 2 + x 2 ) l o g x + l o g x + t a n 1 y x = c = 1 2 l o g ( y 2 + x 2 ) + t a n 1 y x = c

Given,  y = 1 , w h e n , x = 1

So,  = 1 2 l o g ( 1 2 + 1 2 ) + t a n 1 1 1 = c

= 1 2 l o g 2 + π 4 = c

Hence, the particular solution is

1 2 l o g ( 1 2 + 1 2 ) + t a n 1 y x = 1 2 l o g 2 + π 4

 

Q12. x2 dy + (xy + y2  ) dx = 0; y = 1 when x = 1

A.12. The given D.E. is

x 2 d y + ( x y + y 2 ) d x = 0 = x 2 d y = ( x y + y 2 ) d x = d y d x = ( x y + y 2 x 2 ) = [ y x + ( y 2 x ) ] = f ( y x )

i.e, the D.E is homogenous.

Let,  y = v x = v = y x  so that  d y d x = v + x d v d x  in the given D.E.

Then,  v + x d v d x = [ v + v 2 ] = v v 2

= x d v d x = 2 v v 2 = v ( 2 + v ) = d v v ( 2 + v ) = d x x

Integrating both sides we get,

d v v ( 2 + v ) = d x x = 1 2 2 d v 2 ( v + 2 ) = d x x = 1 2 v + 2 v v ( v + 2 ) d v = d x x = 1 2 { 1 v d v 1 v + 2 d v } = d x x

= 1 2 [ l o g v l o g | v + 2 | ] = l o g x + l o g c = 1 2 l o g ( v v + 2 ) = l o g c x = l o g ( v v + 2 ) 1 2 = l o g c x = ( v v + 2 ) 1 2 = c x = v v + 2 = ( c x ) 2

Putting back  v = y x  we get,

= y x y x + 2 = ( c x ) 2 = y y + 2 x = ( c x ) 2 = x 2 y y + 2 x = c 2

Given, y = 1 when x = 1

So,  = 1 1 + 2 = c 2 = c 2 = 1 3

Hence, the required particular solution is,

= x 2 y y + 2 x = 1 3 = 3 x 2 y = y + 2 x

 

Q13.  [ x s i n 2 ( y x y ) ] d x + x d y = 0 ; y = π 4 w h e n x = 1

A.13. The given D.E.is

[ x s i n 2 ( y x ) y ] d x + x d y = 0 = [ x s i n 2 ( y x ) y ] d x = x d y = d y d x = [ x s i n 2 ( y x ) y ] x = [ s i n 2 ( y x ) y x ] = f ( y x )

i.e, the given D.E is homogenous.

Let,  y = v x = y x = v  so that,  d y d x = v x d v d x  in the D.E.

= v + d v d x = [ s i n 2 v v ] = v s i n 2 v = d v d x = s i n 2 v = d v s i n 2 v = d x

Integrating both sides we get,

= c o s e c 2 v d v = d x = c o t v = l o g | x | + c = c o t v = l o g | x | c

Putting back  v = y x  we have,

c o t y x = l o g | x | c

Then,  y = π 4  when,  x = 1

c o t π 4 = l o g | 1 | c = c = 1

 The required particular solution is,

c o t y x = l o g | x | + 1 = l o g | x | + l o g c { l o g e = 1 } = c o t y x = l o g | e x |

 

Q14.  d y d x y x + c o s e c ( y x ) = 0 ; y = 0 w h e n x = 1

A.14.The given D.E.is

d y d x y x + c o s e c ( y x ) = 0 = d y d x = y x c o s e c ( y x ) = f ( y x )

i.e, the given D.E. is homogenous.

Let,  y = v x = y x = v  So that,  d y d x = v + x d v d x  in the D.E

Then,  v + x d v d x = v c o s e c v

= x d v d x = c o s e c v = d v c o s e c v = d x x = s i n v d v = d x x

Integrating both sides we get,

s i n v d v = d x x = c o s v = l o g | x | + c = c o s v = l o g | x | c

Putting back  v = y x  we get,

= c o s y x = l o g | x | c

Given,  y = 0 , w h e n , x = 1

= c o s 0 = l o g 1 c = c = 1

 The required particular solution is

c o s ( y x ) = l o g | x | + 1 = l o g | x | + l o g | c | = c o s ( y x ) = l o g | c x |

 

Q15.  2 x y + y 2 2 x 2 d y d x = 0 ; y = 2 w h e n x = 1

A.15. The given D.E. is

2 x y + y 2 2 x 2 d y d x = 0 = 2 x 2 d y d x = 2 x y + y 2 = d y d x = 2 x y + y 2 2 x 2 = y x + 1 2 ( y x ) 2 = f ( y x )

i.e, the given is homogenous.

Let,  y = v x   = y x = v  so that  d y d x = v + x d v d x  is the D.E.

Then,  v + x d v d x = v + 1 2 v 2

= x d v d x = 1 2 v 2 = d v v 2 = d x 2 x

Now,  = d v v 2 = d x 2 x

= v 2 + 1 2 + 1 = 1 2 l o g | x | + c = 1 v = 1 2 l o g | x | + c

Putting back  y x = v  we get,

= x y = 1 2 l o g | x | + c

G i v e n y x = v w h e n x = 1  and y= 2

= 1 2 = 1 2 l o g | 1 | + c = c = 1 2

 The particular solution is,

= x y = 1 2 l o g | x | 1 2 = 2 x y = l o g | x | 1 = y = 2 x l o g | x | 1 = 2 x 1 l o g | x |

 

Q16. A homogeneous differential equation of the form  d x d y = h ( x y )  can be solved by making the substitution:

(A) y = vx

(B) v = yx

(C) x = vy

(D) x = v

A.16. For a homogenous D.E. of the formula  f ( y x )

We put,  x y = 0 = x = v y

 Option(c) is correct.

 

Q17. Which of the following is a homogeneous differential equation:

(A) (4x +6y +5) dy – (3y + 2x + 4) dx = 0

(B) (xy) dx – x3 + y3) dy = 0

(C) (x2 + 2y2) dx + (2xy + dy) = 0

(D) y2 dx + (x2 – xy + y2) dy = 0

A.17. In (D), each of the terms has a degree 2.

Hence, (D) is homogenous

 Option (D) is correct.

Read more
Maths Ncert Solutions class 12th Logo

Class 12 Differential Equations Exercise 9.6 Solution

Class 12 Differential Equation Exercise 9.6 focuses on solving second-order differential equations. Exercise 9.6 deals with methods for solving higher-order differential equations in the form of d 2 y d x 2 = f ( x ) \frac{d^2y}{dx^2} = f(x) by reducing them to first-order equations. Differential Equations Exercise 9.6 Solutions consist of 19 Questions. Students can check the complete Exercise 9.6 Solutions below;

Class 12 Chapter 9 Differential Equations Exercise 9.6 NCERT Solution

Note: In each of the following differential equations given in Questions 1 to 4, find the general solution:

Q1.  d y d x + 2 y = 2 s i n x

A.1. The given D.E. is

d y d x + 2 y = 2 s i n x  which is of form  d y d x + P x = Q

We have, P = 2

Q = s i n x

So, I.F.  = e P d x = e 2 d x = e 2 x

The solution is  y × I . F = Q × ( I . F ) d x + c

y e 2 x = s i n x e 2 x d x + c = y e 2 x = I + c ( 1 ) W h e r e , I = s i n x e 2 x = s i n x e 2 x ( d d x s i n x e 2 x d x ) d x = s i n x e 2 x 2 1 2 [ c o s x e 2 x d x ] = e 2 x s i n x 2 1 2 [ c o s e 2 x d x ( d d x c o s x e 2 x d x ) d x ] = e 2 x s i n x 2 1 2 [ c o s x e 2 x 2 1 2 ( c o s x ) e 2 x d x ] = e 2 x s i n x 2 e 2 x c o s x 4 1 4 s i n x e 2 x d x

= I = e 2 x s i n x 2 e 2 x c o s x 4 1 4 1 = I + 1 4 I = 2 e 2 x s i n x e 2 x c o s x 4 = 5 4 I = e 2 x ( 2 s i n x c o s x ) 4 = I = e 2 x ( 2 s i n x c o s x ) 5

Hence, equation, (1) becomes,

y e 2 x = e 2 x 5 ( 2 s i n x c o s x ) + c = y = ( 2 s i n x c o s x ) 5 + c e 2 x

Is the required solution.

 

Q2.  d y d x + 3 y = e 2 x

A.2. Given, D.E. is

d y d x + 3 y = e 2 x  which is of the form

d y d x + P y = Q

Where  P = 3 & Q = e 2 x

So, I.F  = e P d x = e 3 d x = e 3 x

So, the solution is  = y × I . F = e 2 x ( I . F ) . d x + c

= y × e 3 x = e 2 x . e 3 x d x + c = e 3 x y = e x d x + c = e 3 x y = e x + c = y = e x e 3 x + c e 3 x = y = e 2 x + c e 3 x

Is the required general solution.

 

Q3.  d y d x + y x = x 2

A.3. The given D.E. is

d y d x + y x = x 2  Which is in the form  d y d x + P y = Q

So,  P = 1 x = & Q = x 2

I . F = e P d x = e 1 2 d x = e l o g x = x { e l o g x = x }

Thus, the general solution is

y × I . F = Q × I . F d x + c y . x = x 2 . x d x + c = x y = x 3 d x + c = x y = x 4 4 + c

 

Q4.  d y d x + s e c x y = t a n x ( 0 x π 2 )

A.4. The given D.E.is

d y d x + ( s e c x ) y = t a n x  Which is in the form  d y d x + P y = Q

So,  P = s e c x & Q = t a n x

  I . F = e P d x = e s e c x d x = e l o g | s e c x + t a n x | = s e c x + t a n x

Thus, the general solution is ,

y × I . F = Q × I . F d x + c = y × ( s e c x + t a n x ) = t a n x ( s e c x + t a n x ) d x + c

= ( t a n x s e c x + t a n 2 x ) d x + c = ( t a n x s e c x + s e c 2 1 ) d x + c = s e c + t a n x x + c

= ( s e c x + t a n x ) y = s e c x + t a n x x + c { s e c 2 x = t a n 2 x + 1 }

 

Q5.  c o s 2 x d y d x + y = t a n x ( 0 x π 2 )

A.5. The given D.E.is

c o s 2 x d y d x + y = t a n x = d y d x + 1 c o s 2 x y = t a n x c o s 2 x

= d y d x + s e c 2 x y = s e c 2 x t a n x  Which is of form  d y d x + P y = Q

So,  P = s e c 2 x & Q = s e c 2 x t a n x

I . F = e P d x = e s e c 2 d x = e t a n x

Thus, the general solution is of the form.

y . e t a n x = s e c 2 x t a n x . e t a n x d x + c

Let,  t a n x = t = s e c 2 x d x = d t

= y e t = t . e t d t + c = t e t d t d d t t e t d t . d t + c = t e t e t d t + c = t e t e t + c = e t ( t 1 ) + c

y e t a n x = e t a n x ( t a n x 1 ) + c y = ( t a n x 1 ) + c e t a n x

 

Q6.  x d y d x + 2 y = x 2 l o g x

A.6. The given D.E. is

x d y d x + 2 y = x 2 l o g x

d y d x + 2 x . y = x l o g x  which is of form  d y d x + P y = Q

So,  P = 2 x & Q = x l o g x

I . F = e P d x = e 2 x d x = e 2 l o g x = e l o g x 2 = x 2

Thus, the general solution is of the form.

y × x 2 = x l o g x . x 2 d x + c

= l o g x x 3 d x + c

= l o g x x 3 d x d d x l o g x x 3 d x d x + c = l o g x . x 4 4 1 4 × x 4 4 d x + c

= y x 2 = x 4 4 l o g x x 4 1 6 + c = y = x 2 4 l o g x x 2 1 6 + c x 2

 

Q7.  x l o g x d y d x + y = 2 x l o g x

A.7. The given D.E. is

x l o g x d y d x + y = 2 x l o g x

= d y d x + y x l o g x = 2 x 2  Which is of form  d y d x + P y = Q

So,  P = 1 x l o g x & Q = 2 x 2

I . F = e P d x = e 1 x l o g x d x = e 1 x l o g x d x = e l o g | l o g x | = l o g x

Thus, the general solution is of the form

y × l o g x = 2 x 2 × l o g x d x + c y . l o g x = 2 [ l o g x 1 x 2 d x d d x l o g x 1 x 2 d x . d x ] + c = 2 [ l o g x × ( x 1 1 ) 1 x ( x 1 1 ) d x ] + c = 2 [ l o g x x + x 2 d x ] + c = 2 [ l o g x x ( x 1 1 ) ] + c

= y l o g x = 2 x [ l o g x + 1 + c ]

 

Q8.  ( 1 + x 2 ) d y + 2 x y d x = c o t x d x ( x 0 )

A.8. The given D.E. is

( 1 + x ) 2 d y + 2 x y d x = c o t x d x = ( 1 + x ) 2 d y d x + 2 x y = c o t x

= d y d x + 2 x 1 + x 2 × y = c o t x 1 + x 2  Which is of form  d y d x + P y = Q

So ,  P = 2 x 1 + x 2 & Q = c o t x 1 + x 2

I . F = e P d x = e 2 x 1 + x 2 d x = e l o g | 1 + x 2 | = 1 + x 2

Thus the solution is of the form,

y ( 1 + x 2 ) = c o t x 1 + x 2 × ( 1 + x 2 ) d x + c y ( 1 + x 2 ) = c o t x d x + c

= l o g | s i n x | + c

y = l o g | s i n x | 1 + x 2 + c 1 + x 2 = ( 1 + x 2 ) 1 l o g | s i n x | + ( 1 + x 2 ) 1 c

 

Q9.  x d y d x + y x + x y c o t x = 0 ( x 0 )

A.9. The given D.E is

= d y d x + y ( 1 + x c o t x ) x = 1  Which is of form  d y d x + P y = Q

So,  P = ( 1 + x c o t x ) x & Q = 1

P d x = ( 1 x + x c o t x x ) d x = l o g | x | + l o g | s i n x | = l o g | x s i n x |

I . F = e P d x e l o g | x s i n x | x s i n x

Thus the solution is of the form.

y × x s i n x = 1 . x s i n x d x + c = x s i n x d d x s i n x d x d x + c = 2 c o s x + c o s x d x + c = y × x s i n x = x c o s x + s i n x + c = y = x c o s x s i n x + s i n x x s i n x + c x s i n x = y = c o t x + 1 x + c x s i n x

 

Q10.  ( x + y ) d y d x = 1

A10. The given D.E is

( x + y ) d y d x = 1 = x + y = d x d y

= d x d y x = y  Which is of form  = d x d y + P x = Q

So,  P = 1 & Q = y

I . F = e P d y = e 1 d y = e y

Thus the general solution is of the form,  x × ( I . F ) = Q ( I . F ) d y + c

 

Q11.  y d x + ( x y 2 ) d y = 0

A.11. The given D.E. is

y d x + ( x y 2 ) d y = 0 = y d x d y + x y 2 = 0 = d x d y + x y y = 0

= d x d y + 1 y . x = y  Which is of form.

d x d y + P x = Q

So,  P = 1 y & Q = y

I . F = e P d y = e 1 y d y = e l o g y = y

Thus the general solution is of form,  x × ( I . F ) = Q × ( I . F ) d y + c

x . y = y . y d y + c = x y = y 2 d y + c = x y = y 3 3 + c = x = y 2 3 + c y

 

Q12.  ( x + 3 y 2 ) d y d x = y ( y > 0 )

A.12. The given D.E. is

( x + 3 y 2 ) d y d x = y ( x + 3 y 2 ) d y = y d x y d x d y = x + 3 y 2 d x d y = x y + 3 y

d x d y 1 y . x = 3 y  Which is form  d x d y + P x = Q

So,  P = 1 y & Q = 3 y

I . F = e P d y = e 1 y d y = e l o g | y | = e l o g y 1 = y 1 = 1 y

Thus the solution is of the form.

x × 1 y = 3 y . 1 y d y + c = x y = 3 d y + c = x y = 3 y + c = x = 3 y 2 + c y

For each of the differential equations given in Questions 13 to 15, find a particular solution satisfying the given condition:

 

Q13.  d y d x + 2 y t a n x = s i n x ; y = 0 w h e n x = π 3

A.13. The given D.E. is

d y d x + 2 y t a n x = s i n x

d y d x + ( 2 t a n x ) y = s i n x  Which is of form  d y d x + P x = Q

So,  P = 2 t a n x & Q = s i n x

I . F = e P d y = e 2 t a n x d x = e 2 l o g | s e c x | = e l o g s e c 2 = s e c 2

Thus the solution is of the form  y × ( I . F ) = Q . ( I . F ) d x + c

y . s e c 2 x = s i n x . s e c 2 x d x + c = s i n x c o s 2 d x + c = t a n x . s e c x d x + c = y s e c 2 = s e c x + c = y = 1 s e c x + c s e c 2 x = c o s x + c c o s 2 = y = c o s x + c c o s 2 x

Given,  y = 0 , W h e n x = π 3

= 0 = c o s π 3 + c c o s 2 π 3 { c 4 = 1 2 , c = 4 2 , c = 2 } = 0 = 1 2 + c ( 1 2 ) 2 = 0 = 1 2 + c 4

C = -2

 The particular solution is

y = c o s x 2 c o s 2 x

 

Q14.  ( 1 + x 2 ) d y d x + 2 x y = 1 1 + x 2 ; y = 0 w h e n x = 1

A.14. The given D.E. is

( 1 + x 2 ) d y d x + 2 x y = 1 1 + x 2

d y d x + P x = Q

So,  P = 2 x 1 + x 2 & Q = 1 ( 1 + x 2 ) 2

P d x = 2 x 1 + x 2 d x = l o g | 1 + x 2 |

I . F = e P d x = e l o g | 1 + x 2 | = 1 + x 2

Thus the solution is if form,

y × ( I . F ) = Q . ( I . F ) d x + c

y ( 1 + x 2 ) = 1 ( 1 + x 2 ) 2 × ( 1 + x 2 ) d x + c = 1 ( 1 + x 2 ) d x + c y × ( 1 + x 2 ) = t a n 1 x + c

Given,  y = 0 , w h e n , x = 1

0 = t a n 1 1 + c c = t a n 1 1 = π 4

 The particular solution is

y ( 1 + x 2 ) = t a n 1 x π 4

 

Q15.  d y d x 3 y c o t x = s i n 2 x ; y = 2 w h e n x = π 2

A.15. The given D.E. is

d y d x 3 y c o t x = s i n 2 x

d y d x 3 c o t x . y = s i n 2 x  Which is of form  d y d x + P y = Q

So,  P = 3 c o t x & Q = s i n 2 x

I . F = e P d x = e 3 c o t x d x = e 3 c o t x d x = e 3 l o g | c o t x d x | = e l o g ( s i n ) 3 = 1 s i n 3 x

Thus the solution is of the form.

y × 1 s i n 3 x = s i n 2 x . 1 s i n 3 x d x + c = 2 s i n x c o s x s i n 3 x d x + c { s i n 2 x = 2 s i n x c o s x } = 2 c o s e c x c o t x d x + c = 2 c o s e c x + c = y s i n 3 x = 2 s i n x + c = 2 y = 2 s i n 2 x + c s i n 3 x

Given,  y = 2 , w h e n , x = π 2

2 = 2 s i n 2 1 2 + c s i n 3 π 2 = 2 = 2 + c = e = 2 + 2 = 4

 The particular solution is,  y = 2 s i n 2 x + 4 s i n 3 x

 

Q16. Find the equation of the curve passing through the origin, given that the slope of the tangent to the curve at any point (x, y) is equal to the sum of coordinates of that point.

A.16. We know the slope of tangent to curve is  d y d x  .

  d y d x = x + y

= d y d x y = x  which has form  d y d x + P y = Q

So,  P = 1 & Q = x

I . F = e P d x = e d x = e x

Thus the solution is of the form .

y × e x = x . e x d x + c = x e x d x d x d x e x d x d x + c = x e x + e x d x + c = y e x = x e x e x + c = y = x 1 + c e x = y + x + 1 = c e x

Given, the curve passes through origin (0,0) i.e,  y = 0 , w h e n , x = 0

0 + 0 + 1 = c e 0 = c = 1

 Thus, equation of the curve is

y + x + 1 = e x

 

Q17. Find the equation of the curve passing through the point (0, 2) given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangents to the curve at that point by 5.

A.17. We know that slope of tangent to the curve is  d y d x

x + y = d y d x + 5

d y d x y = x 5  Which has form  d y d x + P x = Q

w h e r e , P = 1 & Q = x 5

I . F = e P d x = e 1 d x = e x

Thus the solution has the form

y e x = ( x 5 ) e x d x + c = x e x d x 5 e x d x + c = y e x = I + 5 e x + c w h e r e , I = x e x d x = x e x d x d d x x e x d x d x = x e x + e x d x = x e x e x

y e x = x e x e x + 5 e x + c = y e x = x e x + 4 e x + c = y = x + 4 + c e x = y + x = 4 + c e x

Given, the curve passes through (0,2) so y=2 when x=0

2 + 0 = 4 c e 0 2 4 = c c = 2

 The particular solution is

y + x = 4 2 e x

 

Q18. Choose the correct answer:

The integrating factor of the differential equation   d y d x y = 2 x 2  is:

(A) ex

(B) ey

(C)  1 x

(D) x

A.18. The given D.E is

x d y d x y = 2 x 2 d y d x 1 x y = 2 x

Which is of form  d y d x + P y = Q

So,  P = 1 x

I . E = e P d x = e 1 x d x = e l o g x = e l o g x 1 = x 1 = 1 x

 Option (c) is correct

 

Q19. Choose the correct answer:

The integrating factor of the differential equation   ( 1 y 2 ) d x d y + y x = a y ( 1 < < 1 )  .

A.19. The given D.E. is

( 1 y 2 ) d x d y + y x = y ( 1 < y < 1 )

d x d y + y 1 y 2 × x = y 1 y 2  which is of form

d x d y + P x = Q & P = y 1 y 2 & Q = y 1 y 2 p d x = y 1 y 2 d x = 1 2 2 y 1 y 2 d x

= 1 2 l o g | 1 y 2 | = l o g [ 1 y 2 ] 1 2

I . F = e P d x = e l o g [ 1 y 2 ] 1 2 = [ 1 y 2 ] 1 2

 option (D ) is correct.

Read more
Maths Ncert Solutions class 12th Logo

Class 12 Differential Equations Miscellaneous Exercise Solution

Class 12 Differential Equations Miscellaneous Exercise brings together all the key concepts covered in the chapter. This exercise includes problems on all covered topics in the chapter such as determining the order and degree of differential equations, solving equations using the variable separation method, handling homogeneous equations, and applying techniques for linear differential equations. Differential Equation Miscellaneous Exercise Solutions has solutions for all 18 Questions. Students can check the complete Miscellaneous Exercise Solutions below;

Class 12 Chapter 9 Differential Equations Miscellaneous Exercise Solution

Q1. For each of the differential equations given below, indicate its order and degree (if defined):

( i ) d 2 y d x 2 + 5 x ( d y d x ) 2 6 y = l o g x ( i i ) ( d y d x ) 3 4 ( d y d x ) 2 + 7 y = s i n x ( i i i ) d 4 y d x 4 s i n d 3 y d x 3 = 0

A.1. (i) Given: Differential equation    d 2 y d x 2 + 5 x ( d y d x ) 2 6 y = l o g x

The highest order derivative present in this differential equation is  d 2 y d x 2  and hence order of this differential equation if 2.

The given differential equation is a polynomial equation in derivatives and highest power of the highest order derivative  d 2 y d x 2  is 1.

Therefore, Order = 2, Degree = 1

(ii) Given: Differential equation  ( d y d x ) 3 4 ( d y d x ) 2 + 7 y = s i n x

The highest order derivative present in this differential equation is  d y d x  and hence order of this differential equation if 1.

The given differential equation is a polynomial equation in derivatives and highest power of the highest order derivative  d y d x    is 3.

Therefore, Order = 1, Degree = 3

(iii) Given: Differential equation    d 4 y d x 4 s i n d 3 y d x 3 = 0

The highest order derivative present in this differential equation is  d 4 y d x 4  and hence order of this differential equation if 4.

The given differential equation is not a polynomial equation in derivatives therefore, degree of this differential equation is not defined.

Therefore, Order = 4, Degree not defined

 

Q2. For each of the exercises given below verify that the given function (implicit or explicit) is a solution of the corresponding differential equation:

( i ) y a e 2 + b e x + x 2 : x d 2 y d x 2 + 2 d y d x x y + x 2 2 = 0 ( i i ) y = e x ( a c o s x + b s i n x ) : d 2 y d x 2 2 d y d x + 2 y = 0 ( i i i ) y = x s i n 3 x : d 2 y d x 2 + 9 y 6 c o s 3 x = 0 ( i v ) x 2 = 2 y 2 l o g y : ( x 2 + y 2 ) d y d x x y = 0

A.2. (i)  y a e 2 + b e x + x 2

Differentiating both sides with respect to x, we get:

d y d x = a d d x ( e x ) + b d d x ( e x ) + d d x ( x 2 ) d y d x = a e x b e x + 2 x

Again, differentiating both sides with respect to x, we get:

d 2 y d x 2 = a e x b e x + 2 x

Now, on substituting the values of  d y d x  and  d 2 y d x 2  in the differential equation, we get:

L.H.S

x d 2 y d x 2 + 2 d y d x x y + x 2 2 = x ( a e x b e x + 2 ) + 2 ( a e x b e x + 2 x ) x ( a e x + b e x + x 2 ) + x 2 2 = ( x a e x b x e x + 2 x ) + ( 2 a e x 2 b e x + 4 x ) ( a x e x + b x e x + x 3 ) + x 2 2 = 2 a e x 2 b e x + x 2 + 6 x 2 0

Therefore, Function given by equation (i) is a solution of differential equation. (ii).

(ii)  y = e x ( a c o s x + b s i n x ) = a e x c o s x + b e x s i n x

Differentiating both sides with respect to x, we get:

d y d x = a . d d x ( e x c o s x ) + b . d d x ( e x s i n x ) d y d x = a ( e x c o s x e x s i n x ) + b . ( e x s i n x + e x c o s x ) d y d x = ( a + b ) e x c o s x + ( b a ) e x s i n x

Again, differentiating both sides with respect to x, we get:

d 2 y d x 2 = ( a + b ) . d d x ( e x c o s x ) ( b a ) d d x ( e x s i n x ) d 2 y d x 2 = ( a + b ) . [ e x c o s x e x s i n x ] + ( b a ) [ e x s i n x + e x c o s x ] d 2 y d x 2 = e x [ ( a + b ) ( c o s x s i n x ) + ( b a ) ( s i n x + c o s x ) ] d 2 y d x 2 = e x [ a c o s x a s i n x + b c o s x b s i n x + b s i n x + b c o s x a s i n x a c o s x ] d 2 y d x 2 = [ 2 e x ( b c o s x a s i n x ) ]

Now, on substituting the values of  d 2 y d x 2  and  d y d x  in the L.H.S of the given differential equation, we get:

d 2 y d x 2 + 2 d y d x + 2 y = 2 e x ( b c o s x a s i n x ) 2 e x [ ( a + b ) c o s x + ( b a ) s i n x ] + 2 e x ( a c o s x + b s i n x ) = e x [ ( 2 b c o s x 2 a s i n x ) ( 2 a c o s x + 2 b c o s x ) ( 2 b s i n x 2 a s i n x ) + ( 2 a c o s x + 2 b s i n x ) ] = e x [ ( 2 b 2 a 2 b + 2 a ) c o s x ] + e x [ ( 2 a 2 b + 2 a + 2 b ) s i n x ] = 0

Therefore, Function given by equation (i) is solution of differential equation (ii)

(iii)  y = x s i n 3 x

Differentiating both sides with respect to x, we get:

d y d x = d d x ( x s i n 3 x ) = s i n 3 x + x . c o s 3 x . 3 d y d x = s i n 3 x + 3 x c o s 3 x

Again, differentiating both sides with respect to x, we get:

d 2 y d x 2 = d d x ( s i n 3 x ) + 3 d d x ( x c o s 3 x ) d 2 y d x 2 = 3 c o s 3 x + 3 [ c o s 3 x + x ( s i n 3 x ) . 3 ] d 2 y d x 2 6 c o s 3 x 9 x s i n 3 x

Substituting the value of  d 2 y d x 2  in the L.H.S. of the given differential equation, we get:

d 2 y d x 2 + 9 y 6 c o s 3 x = ( 6 . c o s 3 x 9 x s i n 3 x ) + 9 x s i n 3 x 6 c o s 3 x = 0

Therefore, Function given by equation (i) is a solution of differential equation (ii).

(iv)  x 2 = 2 y 2 l o g y

Differentiating both sides with respect to x, we get:

2 x = 2 . d d x = [ y 2 l o g y ] x = [ 2 y . l o g y . d y d x + y 2 . 1 y . d y d x ] x = d y d x ( 2 y l o g y + y ) d y d x = x y ( 1 + 2 l o g y )

Substituting the value of  d y d x  in the L.H.S. of the given differential equation, we get:

( x 2 + y 2 ) d y d x x y = ( 2 y 2 l o g y + y 2 ) . x y ( 1 + 2 l o g y ) x y = y 2 ( 1 + 2 l o g y ) . x y ( 1 + 2 l o g y ) x y = x y x y = 0

Therefore, Function given by equation (i) is a solution of differential equation (ii).

 

Q3. Form the differential equation representing the family of curves   ( x a ) 2 + 2 y 2 = a 2  where a an arbitrary constant.

A.3. Equation of the given family of curves is   ( x a ) 2 + 2 y 2 = a 2

( x a ) 2 + 2 y 2 = a 2 x 2 + a 2 2 a x + 2 y 2 = a 2 2 y 2 = 2 a x x 2 . . . . . . . . . . ( 1 )

Differentiating with respect to x, we get:

2 y d y d x = 2 a 2 x 2 d y d x = a x 2 y d y d x = 2 a 2 x 2 4 x y . . . . . . . . . . ( 2 )

From equation (*1), we get:

2 a x = 2 y 2 + x 2

On substituting this value in equation (3), we get:

d y d x = 2 y 2 + x 2 2 x 2 4 x y d y d x = 2 y 2 x 2 4 x y

Hence, the differential equation of the family of curves is given as  d y d x = 2 y 2 x 2 4 x y  .

Q4. Prove that  x 2 y 2 = c ( x 2 + y 2 ) 2   is the general equation of the differential equation   ( x 3 3 x y 2 ) d x = ( y 3 3 x 2 y ) d y   where c is a parameter.

A.4. d y d x = x 3 3 x y 2 y 3 3 x 2 y . . . . . . . . . . ( 1 )

This is a homogenous equation. To simplify it, we need to make the substitution as:

y = v x d d x ( y ) = d d x ( v x ) d y d x = v + x d v d x

Substituting the values of y and  d v d x  in equation (1), we get:

v + x d v d x = x 3 3 x ( v x ) 2 ( v x ) 3 3 x 2 ( v x ) v + x d v d x = 1 3 v 2 v 3 3 v x d v d x = 1 3 v 2 v 3 3 v v x d v d x = 1 3 v 2 v ( v 3 3 v ) v 3 3 v x d v d x = 1 v 4 v 3 3 v ( v 3 3 v 1 v 4 ) d v = d x x

Integrating both sides, we get:

( v 3 3 v 1 v 4 ) d v = l o g x + l o g C ' . . . . . . . . . ( 2 ) N o w , ( v 3 3 v 1 v 4 ) d v = v 3 d v 1 v 4 3 v d v 1 v 4 ( v 3 3 v 1 v 4 ) d v = I 1 3 I 2 , W h e r e , I 1 = v 3 d v 1 v 4 a n d I 2 = v d v 1 v 4 . . . . . . . . . . . ( 3 )

L e t , 1 v 4 = t . d d v ( 1 v 4 ) = d t d v 4 v 3 = d t d v v 3 d v = d t 4 N o w , I 1 = d t 4 = l o g t = 1 4 l o g ( 1 v 4 )

A n d , I 2 = v d v 1 v 4 = v d v 1 ( v 2 ) 2 L e t , v 2 = p . d d v ( v 2 ) = d p d v 2 v = d p d v v d v = p 2 I 2 = 1 2 d p 1 p 2 = 1 2 × 2 l o g | 1 + p 1 p | = 1 4 l o g | 1 + v 2 1 v 2 |

Substituting the values of  I 1  and  I 2  in equation (3), we get:

( v 3 3 v 1 v 4 ) d v = 1 4 l o g ( 1 v 4 ) 3 4 l o g | 1 + v 2 1 v 2 |

Therefore, equation (2) becomes:

1 4 l o g ( 1 v 4 ) 3 4 l o g | 1 + v 2 1 v 2 | = l o g x + l o g C ' 1 4 l o g [ ( 1 v 4 ) ( 1 + v 2 1 v 2 ) ] = l o g C ' x ( 1 + v 2 ) 4 ( 1 v 2 ) 2 = ( C ' x ) 4 ( 1 + y 2 x 2 ) 4 ( 1 y 2 x 2 ) 2 = 1 C ' 4 x 4 ( x 2 + y 2 ) 4 x 4 ( x 2 y 2 ) 2 = 1 C ' 4 x 4 ( x 2 y 2 ) 2 = C ' 4 ( x 2 + y 2 ) 4 ( x 2 y 2 ) = C ' 2 ( x 2 + y 2 ) 2 x 2 y 2 = C ( x 2 + y 2 ) 2 , w h e r e C = C ' 2

Hence, the given result is proved.

 

Q5. For the differential equation of the family of the circles in the first quadrant which touch the coordinate axes.

A.5. The equation of a circle in the first quadrant with centre (a, a) and radius (a) which touches the coordinate axes is:

( x a ) 2 + ( y a ) 2 = a 2 . . . . . . . . . . ( 1 )

Differentiating equation (1) with respect to x, we get:

2 ( x a ) + 2 ( y a ) d y d x = 0 ( x a ) + ( y a ) y ' = 0 x a + y y ' a y ' = 0 x + y y ' a ( 1 + y ' ) = 0 a = x + y y ' 1 + y '

Substituting the value of a in equation (1), we get:

[ x ( x + y y ' 1 + y ' ) ] 2 + [ y ( x + y y ' 1 + y ' ) ] 2 = ( x + y y ' 1 + y ' ) 2 [ ( x a ) y ' ( 1 + y ' ) ] 2 + [ y x 1 + y ' ] 2 = [ x + y y ' 1 + y ' ] 2 ( x y ) 2 . y ' 2 + ( x y ) 2 = ( x + y y ' ) 2 ( x y ) 2 [ 1 + ( y ' ) 2 ] = ( x + y y ' ) 2

Hence, the required differential equation of the family of circles is  ( x y ) 2 [ 1 + ( y ' ) 2 ] = ( x + y y ' ) 2

 

 
Q7. Show that the general solution of the differential equation 

d y d x + y 2 + y + 1 x 2 + x + 1 = 0  is given by  ( x + y + 1 ) A ( 1 x y 2 x y ) ,  where A is parameter.

A.7. Given: Differential equation  d y d x + y 2 + y + 1 x 2 + x + 1 = 0

d y d x + y 2 + y + 1 x 2 + x + 1 = 0 d y d x = ( y 2 + y + 1 ) x 2 + x + 1 d y y 2 + y + 1 = d x x 2 + x + 1 d y y 2 + y + 1 + d x x 2 + x + 1 = 0

Integrating both sides,

 

Q8. Find the equation of the curve passing through the point (0,π/4), whose differential equation is sin x cos y dx + cos x sin y dy = 0.

A.8. The differential equation of the given curve is:

s i n x c o s y d x + c o s x s i n y d y = 0 s i n x c o s y d x + c o s x s i n y d y c o s x c o s y = 0 t a n x d x + t a n y d y = 0

Integrating both sides, we get:

l o g ( s e c x ) + l o g ( s e c y ) = l o g C l o g ( s e c x . s e c y ) = l o g C s e c x . s e c y = C . . . . . . . . . . ( 1 )

The curve passes through point  ( 0 , π 4 )

1 ×√2 = C C =√2

On subtracting  C =√2  in equation (10, we get:

s e c x . s e c y =√2 s e c x . 1 c o s y =√2 c o s y = s e c x/√2

 

Q9. Find the particular solution of the differential equation (1 + e2x ) dy + (1 + y2 ) ex dx = 0, given that y = 1 when x = 0.

A.9.  ( 1 + e 2 x ) d y + ( 1 + y 2 ) e x d x = 0 d y 1 + y 2 + e x d x 1 + e 2 x = 0

Integrating both sides, we get:

t a n 1 y + e x d x 1 + e 2 x = C . . . . . . . . . . ( 1 ) L e t , e x = t e 2 x = t 2 d d x ( e x ) = d t d x e x = d t d x e x d x = d t

Substituting these values in equation (1), we get:

t a n 1 y + d t 1 + t 2 = C t a n 1 y + t a n 1 t = C t a n 1 y + t a n 1 ( e x ) = C . . . . . . . . . . ( 2 ) N o w , y = 1 , a t , x = 0

Therefore, equation (2) becomes:

t a n 1 1 + t a n 1 1 = C π 4 + π 4 = C C = π 2

Substituting  C = π 2  in equation (2), we get:

t a n 1 y + t a n 1 ( e x ) = π 2

This is the required solution of the given differential equation.

 

Q10. Solve the differential equation:  y e x y d x = ( x e x y + y 2 ) d y ( y 0 )

A.10.

y e x y d x = ( x e x y + y 2 ) d y y e x y d x d y = x e x y + y 2 e x y [ y . d x d y x ] = y 2 e x y . [ y . d x d y x ] y 2 = 1 . . . . . . . . . . ( 1 )

L e t , e x y = z

Differentiating it with respect to y, we get:

( e x y ) = d z d y e x y . d d y ( x y ) = d z d y e x y . [ y . d x d y x y 2 ] = d z d y . . . . . . . . . . ( 2 )

From equation (1) and equation (2), we get:

d z d y = 1 d z = d y

Integration both sides, we get:

z = y + C e x y y + C

 

Q11. Find a particular solution of the differential equation (x – y) (dx + dy) = dx – dy, given that y = –1, when x = 0. (Hint: put x – y = t)

A.11.

( x y ) ( d x + d y ) = d x d y ( x y + 1 ) d y = ( 1 x + y ) d x d y d x = 1 x + y x y + 1 d y d x = 1 ( x y ) 1 + ( x y ) . . . . . . . . . . ( 1 ) L e t , x y = t d d x ( x y ) = d t d x 1 d y d x = d t d x 1 d t d x = d y d x

Substituting the values of  x y  and  d y d x  in equation (1), we get:

1 d t d x = 1 t 1 + t d t d x = 1 ( 1 t 1 + t ) d t d x = ( 1 + t ) ( 1 t ) 1 + t d t d x = 2 t 1 + t

( 1 + t t d t ) = 2 d x ( 1 + 1 t ) d t = 2 d x . . . . . . . . . . ( 2 )

Integrating both sides, we get:

t + l o g | t | = 2 x + C ( x y ) + l o g | x y | = 2 x + C l o g | x y | = x + y + C . . . . . . . . . . ( 3 )

N o w , y = 1 , a t , x = 0

Therefore, equation (3) becomes:

l o g 1 = 0 1 + C

C = 1

Substituting  C = 1  in equation (3), we get:

o g | x y | = x + y + 1

This is the required particular solution of the given differential equation .

 

Q13. Find the particular solution of the differential equation  d y d x + y c o t x = 4 x c o s e c x ( x 0 )

given that y = 0 when x = π/2

A.13. The given differential equation is:

d y d x + y c o t x = 4 x c o s e c x

This equation is a linear equation of the form

d y d x + P y = Q , w h e r e , p = c o t x & Q = 4 x c o s e c x N o w , I . F = e P d x = e c o t x d x = e l o g | s i n x | = s i n x

The general solution of the given differential equation is given by,

y ( I . F ) = ( Q × I . F . ) d x + C

y s i n x = ( 4 x c o s e c x . s i n x ) d x + C y s i n x = 4 x d x + C y s i n x = 4 . x 2 2 + C y s i n x = 2 x 2 + C . . . . . . . . . . ( 1 ) N o w , y = 0 a t , x = π 2

Therefore, equation (1) becomes:

0 = 2 × π 2 + C C = π 2 2

Substituting  C = π 2 2  in equation (1), we get:

y s i n x = 2 x 2 π 2 2

This is the required particular solution of the given differential equation.

 

Q14. Find the particular solution of the differential equation  ( x + 1 ) d y d x = 2 e y 1  given that y = 0 when x = 0

A.14.

( x + 1 ) d y d x = 2 e y 1 d y 2 e y 1 = d x x + 1 e y d y 2 e y = d x x + 1

Integrating both sides, we get:

e y d y 2 e y = l o g | x + 1 | + l o g C . . . . . . . . . . ( 1 ) L e t 2 e y = t d d y ( 2 e y ) = d t d y e y = d t d y e y d y = d t

Substituting this value in equation (1), we get:

d t t = l o g o g | x + 1 | + l o g C l o g | t | = l o g | C ( x + 1 ) | l o g | 2 e y | = l o g | C ( x + 1 ) | 1 2 e y = C ( x + 1 ) 2 e y = 1 C ( x + 1 ) . . . . . . . . . . ( 2 )

Now, at x=0& y=0, equation (2) becomes:

2 1 = 1 C C = 1

Substituting  C = 1  in equation (2), we get:

2 e y = 1 x + 1 e y = 2 1 x + 1 e y = 2 x + 2 1 x + 1 e y = 2 x + 1 x + 1 y = l o g | 2 x + 1 x + 1 | , ( x 1 )

This is the required particular solution of the given differential equation.

Q15. The population of a village increases continuously at the rate proportional to the number of its inhabitants present at any time. If the population of the village was 20,000 in 1999 and 25,000 in the year 2004, what will be the population of the village in 2009?

A.15. Let the population at any instant (t) be y.

It is given that the rate of increase of population is proportional to the number of inhabitants at any instant.

d y d t α y

d y d t = k y  (k is constant)

d y y = k d t

Integration both sides, we get:

l o g y = k t + C . . . . . . . . . . ( 1 )

In the year  1 9 9 9 , t = 0 & y = 2 0 0 0 0 .

Therefore, we get:

l o g 2 0 0 0 0 = C . . . . . . . . . . ( 2 )

In the year  2 0 0 4 , t = 5 & y = 2 5 0 0 0 .

Therefore, we get:

l o g 2 5 0 0 0 = 5 k + l o g 2 0 0 0 0 5 k = l o g ( 2 5 0 0 0 2 0 0 0 0 ) = l o g ( 5 4 ) k = 1 5 l o g ( 5 4 ) . . . . . . . . . . ( 3 )

In the year  2 0 0 9 , t = 1 0 y e a r s

Now, on substituting the values of t, k, and C in equation (1), we get:

l o g y = 1 0 × 1 5 l o g ( 5 4 ) + l o g ( 2 0 0 0 0 ) l o g y = l o g [ 2 0 0 0 0 × ( 5 4 ) 2 ] y = 2 0 0 0 0 × 5 4 × 5 4 y = 3 1 2 5 0

Hence, the population of the village in 2009 will be 31250.

Choose the correct answer:

Q16. The general solution of the differential equation   y d x x d y y = 0  is:

( A ) x y = c ( B ) x = c y 2 ( C ) y = c x ( D ) y = c x 2

A.16.

The given differential equation is:

y d x x d y y = 0 y d x x d y x y = 0 1 x d x 1 y d y = 0

Integration both sides, we get:

l o g | x | l o g | y | = l o g k l o g | x y | = l o g k x y = k y = 1 k x y = C x , w h e r e , C = 1 k

Therefore, option (C) is correct.

 

Q17. The general equation of a differential equation of the type  d x d y + P 1 x = Q , i s :

( A ) y e P 1 d y = ( Q 1 e P 1 d y ) d y + C ( B ) y . e P 1 d x = ( Q 1 e P 1 d x ) d x + C ( C ) x e P 1 d y = ( Q 1 e P 1 d y ) d y + C ( D ) x . e P 1 d x = ( Q 1 e P 1 d x ) d x + C

A.17.

The integrating factor of the given differential equation   d x d y + P 1 x = Q 1

The general solution of the differential equation is given by,

x ( I . F . ) = ( Q × I . F . ) d y + C x . e P 1 d y = ( Q 1 e P 1 d y ) d y + C

Hence, the correct answer is C.

 

Q18. The general solution of the differential equation   e x d y + ( y e x + 2 x ) d x = 0   is:

( A ) x e y + x 2 = C ( B ) x e y + y 2 = C ( C ) y e x + x 2 = C ( D ) y e y + x 2 = C

A.18.

The given differential equation is:

e x d y + ( y e x + 2 x ) d x = 0 e x d y d x + y e x + 2 x = 0 d y d x + y = 2 x e x

This is a linear differential equation of the form

d y d x + P y = Q , w h e r e P = 1 & Q = 2 x e x N o w , I . F . = e P d x = e d x = e x

The general solution of the given differential equation is given by,

y ( I . F . ) = ( Q × I . F . ) d x + C y e x = ( 2 x e x . e x ) d x + C y e x = 2 x d x + C y e x = x 2 + C y e x + x 2 = C

Therefore, option (c) is correct.

 

Read more

Class 12 Math Preparation Tips and Recommended Books

Mathematics is one the most important subjects for science stream students. Whether it's Boards or competitive exams like JEE, GUJCET, and others, Students always need strong mathematical knowledge which also helps in critical thinking to ace in other subjects also. While NCERT Math textbooks for classes 11 & 12 are necessary to build a strong foundation, some additional reference books provide an edge with advanced problems, detailed explanations, and ample practice questions. To help our readers, Shiksha brings list of recommended Math books and Prep tips for competitive exams. Students can check the preparation tips and book recommendations below;

Important Maths Reference Books For Preparation

  • RD Sharma Mathematics for Class 12 ( ( Vol.I and II)
  • Objective Mathematics by R.D. Sharma 
  • Cengage Mathematics Book Series by G. Tewani
  • Problems in Calculus of One Variable by I.A. Maron 
  • Trigonometry and Co-ordinate Geometry by SL Loney

Students must discuss the options with their teachers or mentors before buying the Math reference books for JEE Main preparation.

Math Preparation Tips for Class 12 Boards and JEE Main

  • Go through the Syllabus: Download the official Syllabus brochure of JEE Main and Class 12 Boards. Also, go through the previous year's questions to understand the importance of the topics and important chapters.
  • Select Right Preparation Resources: Talk to seniors, teachers, and mentors while choosing the resources, Right booklist and online re . Students must find resources which are crisp and concise and contain the same level of questions and examples as asked in the exam.
  • Prioritize High-Weightage Topics: Make a list of all topics based on the priority of weightage in the CBSE and JEE Mains Exams respectively. 
  • Cover Whole Syllabus: Students should try to finish their syllabus as quickly as possible and in detail with thorough understanding of all concepts.
  • Practice Chapter-wise and Mock test Regularly: As said Practice a man perfect, Students must focus on practicing the questions as much as possible. Practricing regularly makes students comfortable with solving question quickly.
  • Revisions: Students should revise the concepts and important sum techniques multiple times. Make schedule for monthly and weekly revision of the concepts.
  • Regular Mock Test: Students must take good amount of Mock test/ Board sample papers before attending the real exam. Students should attempt Chapter-wise, sectional and complete mock test as per the preparation condition and time.
qna

Maths Ncert Solutions class 12th Exam

Student Forum

chatAnything you would want to ask experts?
Write here...