Class 12 Maths NCERT Solutions Chapter 3 Matrices: Exercise PDFs, Key Topics, Weightage & Formulae

NCERT Maths 12th 2023 ( Maths Ncert Solutions class 12th )

nitesh singh
Updated on Jan 22, 2025 17:21 IST

By nitesh singh, Senior Executive

Class 12 Chapter 3 Matrices NCERT Solutions: Students can find complete class 12 Matrices solutions prepared by our experts in Shiksha. Class 12 Chapter 3 Matrices is an important chapter because of its weightage in board and competitive exams. The concepts of the Matrices chapter are used in solving linear equations in coordinate geometry, linear algebra, and more.

The concepts of Matrices were developed in an attempt to find short and simple ways of solving the system of linear equations. Matrices are used as a representation of the coefficients in a system of linear equations (in the form of data/ table). Tools of Matrices are used in many disciplines such as economics, mechanics, modern psychology, genetics, and others.

We have provided Class 12 Matrices NCERT Solutions with detailed explanations, covering each concept. Students must check out the complete Class 11 Math chapter-wise Solutions and Class 12 Chapter-wise Math solutions available on Shiksha.  Students can also download the complete Exercise-wise solution of Matrices Class 12 NCERT PDF for free from this page.

Students must download the Class 12 Math Matrices Solution PDF and use it to strengthen their concepts for Boards and other entrance exams such as JEE, COMEDK etc. Students can read the article below for complete information on the Class 12 NCERT Matrices chapter such as important formulae, weightage, exercise-wise solutions, and more;

Related Important Math Chapter Solutions
Class 12 Chapter 10 Vector Algebra Class 11 Chapter 12 Three-Dimensional Geometry Class 12 Chapter 4 Determinants

 

 

Table of content
  • Class 12 Math Chapter 3 Matrices: Key Topics, Weightage & Important Formulae
  • Class 12 Math Chapter 3 Matrices Solution PDF: Free Download
  • Class 12 Math Chapter 3 Matrices Exercise-wise Solutions
  • Class 12 Math Chapter 3 Matrices Exercise 3.1 Solutions
  • Class 12 Math Chapter 3 Matrices Exercise 3.2 Solutions
  • Class 12 Math Chapter 3 Matrices Exercise 3.3 Solutions
  • Class 12 Math Chapter 3 Matrices Exercise 3.4 Solutions
  • Class 12 Math Chapter 3 Matrices Miscellaneous Exercise Solutions
  • Class 12 Math important reference books and preparation Tips
View More
Maths Ncert Solutions class 12th Logo

Class 12 Math Chapter 3 Matrices: Key Topics, Weightage & Important Formulae

The Class 12 Chapter 3 Matrices typically have 6-8 marks weightage in the CBSE Class 12 Board Exams. Matrices are also a very important chapter for competitive exams for their direct weightage moreover its applications in solving linear equation systems in geometry, linear algebra, vector algebra, and more. Check the Key Topics discussed in Matrices Class 12 Solutions below;

Class 12 Matrices Key Topics

  • Fundamentals of Matrices: Matrices are defined as an ordered rectangular array of numbers or functions. The numbers or functions are called the elements/ entries of the matrix. basic of Matrices are discussed.
  • Types of Matrices: Row Matrix, Column Matrix, Square Matrix, Diagonal Matrix, Scalar Matrix, Identity Matrix, Zero/Null Matrix, Symmetric and Skew-Symmetric Matrices.
  • Operations on Matrices: Addition and Subtraction, Scalar Multiplication, Matrix/ Vector Multiplication, Transpose of a Matrix.
  • Other Important Concepts: Properties of Matrix Operations, Determinants and Inverses 
  • Applications of Matrices: Solving linear equations system using matrices.

**Check out Dropped Topics of Class 12 Chapter 3 Matrices – 3.7 Elementary Operations (Transformation) of a Matrix, 3.8.1 Inverse of Matrices by Elementary Operations (Retain Ques. 18 of Exercise 3.4), Page 98 Example 26, Page 100-101 Ques. 1–3 and 12 (Miscellaneous Exercise), Page 102 Third Last Point of Summary.

Matrices Important Formulae for CBSE and Competitive Exams

Students can check important formulae and basic concepts of the Matrices chapter below for a better understanding of questions. Students can also use these formulae to solve exercises.

Matrix Basics

  • Order of a Matrix:
    • If a matrix has m m rows and n n columns, its order is m × n m \times n .
  • Elements:
    • A = [ a i j ] A = [a_{ij}] , where a i j a_{ij} represents the element in the i th i^{\text{th}} row and j th j^{\text{th}} column.

Matrix Operations

  • Addition/Subtraction:

    ( A ± B ) i j = a i j ± b i j (A \pm B)_{ij} = a_{ij} \pm b_{ij}
  • Scalar Multiplication:

    ( k A ) i j = k a i j (kA)_{ij} = k \cdot a_{ij}
  • Matrix Multiplication:

    ( A B ) i j = k = 1 n a i k b k j (AB)_{ij} = \sum_{k=1}^n a_{ik} \cdot b_{kj}
    • Condition: Number of columns in A A = Number of rows in B B .
  • Transpose of a Matrix:

    ( A T ) i j = a j i (A^T)_{ij} = a_{ji}

Properties of Matrix Operations

  • Transpose Properties:

    ( A T ) T = A (A^T)^T = A ( A + B ) T = A T + B T (A + B)^T = A^T + B^T ( k A ) T = k A T (kA)^T = kA^T ( A B ) T = B T A T (AB)^T = B^T A^T
  • Symmetry:

    A T = A ( Symmetric ) A^T = A \quad (\text{Symmetric}) A T = A ( Skew-Symmetric ) A^T = -A \quad (\text{Skew-Symmetric})
  • Identity Matrix Properties:

    A I = I A = A AI = IA = A

Determinant and Inverse of Square Matrices

  • Adjoint Formula for Inverse:

    A 1 = Adj ( A ) det ( A ) A^{-1} = \frac{\text{Adj}(A)}{\det(A)}
  • Determinant Property:

    det ( A T ) = det ( A ) \det(A^T) = \det(A)

Applications of Matrcies

  • Solving Linear Equations: A X = B       X = A 1 B AX = B \implies X = A^{-1}B
  • Consistency of Linear Equations:
    • If det ( A ) 0 \det(A) \neq 0 , the system has a unique solution.
Maths Ncert Solutions class 12th Logo

Class 12 Math Chapter 3 Matrices Solution PDF: Free Download

We have uploaded the complete exercise-wise solution of Matrices Class 12 NCERT PDF in one place. This Class 12 Chapter 3 Matrices NCERT Solution PDF is beneficial for all students in both CBSE boards and competitive exams; JEE Main, CUSAT CAT, BITSAT, etc... Students can access for free the Matrices Class 12 solutions pdf download below;

Class 12 Math Chapter 3 Matrices Solution: Free PDF Download

 

Maths Ncert Solutions class 12th Logo

Class 12 Math Chapter 3 Matrices Exercise-wise Solutions

The class 12 Matrices Chapter focuses on several important topics, such as the Type of Matrices, zero, symmetric, and asymmetric Matrices, the Transpose and Inverse of Matrices, and other Matrices operations. Students will encounter different problems based on these concepts in the exercises. Each exercise deals with different concepts, Class 12 Matrices Exercise 3.1 deals with the basics of Matrix, its types and fundamentals. Class 12 Matrices Exercise 3.2  deals with operations of Matrix, its multiplication both scaler and vector and more advanced concepts. Class 12 Matrices Exercise 3.3 deals with problems finding the transpose and inverse of Matrix. Students can check Exercise-wise Class 12 Chapter 3 Matrices NCERT Solutions below;

Maths Ncert Solutions class 12th Logo

Class 12 Math Chapter 3 Matrices Exercise 3.1 Solutions

Matrices exercise 3.1 solutions focuses on the basic concepts of matrices. Definition, types of Matrices, and basic operations of matrices are several topics discussed in the solutions of Matrices Class 12 Exercise 3.1. Chapter 3 Matrices Exercise 3.1 includes 10 Questions (7 Short Answers, 3 MCQs). Students can find the solution of exercise 3.1 below;

Matrices Exercise 3.1 Solutions

 

Q2. If a matrix has 24 elements, what are the possible orders it can have? What, if it has 13 elements?

A.2. As, number of elements of matrix having order m × n = m.n.

(b) So, (possible) order of matrix with 24 elements are (1 × 24), (2 × 12), (3 × 8), (4 × 6), (6 × 4), (8 × 3), (12 × 2), 24 × 1).

Similarly, possible order of matrix with 13 elements are (1 × 13) and (13 × 1)

 

Q3.If a matrix has 18 elements, what are the possible orders it can have? What, if it has 5 elements?

A.3. As number of elements of matrix with order m × n

(E) Possible order of matrix with 18 elements are (1 × 18), (2 × 9), (3 × 6), (6 × 3), (9 × 2) and (18 × 1)

Similarly, possible order of matrix with 5 elements are (1 × 5) and (5 × 1)

 

Q4.Construct a 2 × 2 matrix,  A = [ a i j ]  , whose elements are given by:

a i j = ( i + j ) 2 2  (ii)  a i j = i j  (iii)  a i j = ( i + 2 j ) 2 2

A.4. (E) (i) aij ( i + j ) 2 2  such that i = 1, 2 and j = 1 × 2 for 2 × 2 matrix

Therefore a11 = ( 1 + 1 ) 2 2 = 2 2 2 = 2 A 2 = [ a 1 1 a 1 2 a 2 1 a 2 2 ]

a12 = ( 1 + 2 ) 2 2 = 3 2 2 = 9 2

a21 ( 2 + 1 ) 2 2 = 3 2 2 = 9 2   [ 2 9 2 9 2 8 ]

a22 = ( 2 + 2 ) 2 2 = 4 2 2 = 1 6 2 = 8

 

Q5.Construct a 3 × 4 matrix, whose elements are given by:

(i)  a i j = 1 2 | 3 i + j |  (ii)  a i j = 2 i j

A.5. (E) (i) aij = 1 2   | 3 i + j |  such that i = 1, 2, 3 and j = 1, 2, 3, 4 for 3 × 4 matrix

So, a11= 1 2  .  | 3 . 1 + 1 | = 1 2 | 3 + 1 | = 1 2 | 3 + 1 | = 1 2 | 2 | = 2 2 = 1 .

a12 = 1 2 | 3 . 1 + 2 | = 1 2 | 1 | = 1 2

a 1 3 = 1 2 | 3 . 1 + 3 | = 1 2 × 0 = 0

a14 = 1 2 | 3 . 1 + 4 | = 1 2 | 1 | = 1 2

a21 = 1 2 | 3 . 2 + 1 | = 1 2 | 6 + 1 | = 1 2 | 5 | = 5 2

a22 = 1 2 | 3 . 2 + 2 | = 1 2 | 6 + 2 | = 1 2 | 4 | = 4 2 = 2

a23 = 1 2 | 3 . 2 + 3 | = 1 2 | 6 + 3 | = 1 2 | 3 | = 3 2

a 2 4 = 1 2 | 3 2 + 4 | = 1 2 | 6 + 4 | = 1 2 + 4 | 2 | = 2 2 = 1

a 3 1 = 1 2 | 3 3 + 1 | = 1 2 | 0 + 1 | = 1 2 | 8 | = 8 2 = 4 .

a 3 2 = 1 2 | 3 2 + 2 | = 1 2 | 9 + 2 | = 7 2 = 7 2

a 3 3 = 1 2 | 3 3 + 3 | = 1 2 | 9 + 3 | = + 6 2 = 6 2 = 3

a 3 4 = 1 2 | 3 3 + 4 | = 1 2 | 9 + 4 | = | 5 | 2 = 5 2 .

 

Q6. Find the values of x, y and z from the following equations:

A.6. (i)  [ 4 3 x 5 ] = [ y z 1 5 ]

corresponding

By equating the elements of the matrices, we get,

x= 1

y= 4

z= 3.

(ii)  [ x + y 2 5 + z x y ] = [ 6 2 5 8 ]

By equating the corresponding elements of the matrices we get,

x+ y = 6 (I)

5 + Z = 5  z = 5 5 z = 0

xy = 8

 x  = 8 y   →(2)

putting eq n ( 2 )  in (1) we get

8 y  + y = 6.

8 + y2 = 6y

y2 6y + 8 = 0.

y2 - 4y - 2y + 8 = 0

y (y-4) -2 (y-4) = 0

(y-4) (y-2) = 0

 y= 4 0r y = 2.

When y = 4,x= 6-y = 6-4 = and z = 0.

Wheny = 2,x = 6-y = 6-2 = 4 and z = 0.

By equating the corresponding elements of the matrices we get,

x+ y + z = 9 -------(i)

x + z = 7 --------(ii)

y + z = 7 -------(iii)

Subtracting eqn (3) from (1) and (2) from (1) we get,

x + y + z -y - z = 9 - 7 and x + y + z - x - z = 9 - 5

 x = 2 and y = 4 .

Putting x = 2 in eqn (2)

2 + z = 5

z = 5 - 2 = 3.

So, x = 2,y = 4, z = 3.

 

Q7. Find the value of a, b, c and d from the equation:

[ a b 2 a + c 2 a b 3 c + d ] = [ 1 5 0 1 3 ]

A.7.  [ a b 2 a + c 2 a b 3 c + d ] = [ 1 5 0 1 3 ]

(5) Equating the corresponding elements of the matrices we get,

a - b = -1 --------(i)

2a + c = 5 ------(2)

2a - b = 0 ----(3)

3c + d = 13 -----(4)

Subtracting eqn(1) from (3) we get,

2a - b (a - b) = 0-(-1)

2a - b - a+ b = 0 + 1 = 1

 [a= 1]

Put  a = 1 eq n ( 2 )  we get,

2 × 1 + c = 5  c = 5 - 2  [c = 3]

Put  c = 3 q n  (4) we get,

3 × 3 + d = 13  => d = 13 - 9  [d = 4.]

put  a = 1 q 2 ( 1 ) we get, 1 - b = -1  b = 1 + 1   [b= 2]

 

Q8.A=  [ a i j ] m x n \  is a square matrix, if

(A) m n (C) m = n  (D) None of these

A.8.  = [ a i j ] m × n  is a square matrix if m = n

(E) Option C is correct.

 

Q9.Which of the given values of x and y make the following pair of matrices equal:

[ 3 x + 7 5 y + 1 2 3 x ] , [ 0 y 2 8 4 ]

(A) x = 1 3 , y = 7 (B) Not possible to find (C)  y = 7 , x = 2 3

(D)  x = 1 3 , y = 2 3

A.9. For the matrices to be equal, the corresponding elements

(B) heed to be equal so,

Fora11, 3x+ 7 = 0

3x = -7.

 x =  7 3

fora12, 5 = y - 2 

 y = + 5 + 2 = 7.

For a21, y + 1 = 8

    y = 8 - 1 = 7.

fora22, 2 - 3x = 4.

3x = 2 - 4

x = 2 3

As the variable x and y has more than one value which is not peacetable.

Option B is correct.

 

Q10.The number of all possible matrices of order 3 × 3 with each entry 0 or 1 is:

(A) 27 (B) 18 (C) 81 (D) 512

A.10.  A 3 × 3 order matrix will have 9 elements

(M) Since, the elements can be either 1 or  0il ,  number of choices for each element is 2 .

The required no. of arrangement = 29(4,2 × 2 × 2 9 times )   512

So, option D is correct.

 

Maths Ncert Solutions class 12th Logo

Class 12 Math Chapter 3 Matrices Exercise 3.2 Solutions

Class 12 Matrices Exercise 3.2  deals with problems based on the operations performed on matrices such as addition, subtraction, scalar multiplication, and their properties. The Matrices exercise 3.2 includes 22 Questions 14 Long, 6 Short, and 2 MCQs. Students can check the complete exercise 3.2 solution below;

Matrix Exercise 3.2 Solutions

Q1 Let A = [ 2 4 3 2 ] , B = [ 1 3 2 5 ] , C = [ 2 5 3 4 ]

Find each of the following:

(i) A + B (ii) A – B (iii) 3A – C (iv) AB (v) BA

A.1. A = [ 2 4 3 2 ] ,  B  = [ 1 3 2 5 ] ,  C  = [ 2 5 3 4 ]

(i) A + B =  [ 2 4 3 2 ] + [ 1 3 2 5 ] = [ 2 + 1 4 + 3 3 2 2 + 5 ] = [ 3 7 1 7 ]

(ii) A - B = [ 2 4 3 2 ] [ 1 3 2 5 ] = [ 2 1 4 3 3 ( 2 ) 2 5 ] = [ 3 1 5 3 ] .

(iii) 3A - C = 3 [ 2 4 3 2 ] [ 2 5 3 4 ] = [ 3 × 2 3 × 4 3 × 3 3 × 2 ] [ 2 5 3 4 ] = [ 6 1 2 9 6 ] [ 2 5 3 4 ]

  = [ 6 ( 2 ) 1 2 5 9 3 6 4 ]  =  [ 8 7 6 2 ]

(iv) AB =  [ 2 4 3 2 ] [ 1 3 2 5 ] = [ 2 × 1 + 4 × ( 2 ) 2 × 3 + 4 × 5 3 × 1 + 2 × ( 2 ) 3 × 3 + 2 × 5 ] = [ 2 8 6 + 2 0 3 4 9 + 1 0 ]

[ 6 2 6 1 1 9 ]

 

Q2.Compute the following:

(i)  [ a b b a ] + [ a b b a ]  (ii)  [ a 2 + b 2 b 2 + c 2 a 2 + c 2 a 2 + b 2 ] + [ 2 a b 2 b c 2 a c 2 a b ]

(iii)  [ 1 4 6 8 5 1 6 2 8 5 ] + [ 1 2 7 6 8 0 5 3 2 4 ]  (iv)  [ c o s 2 x s i n 2 x s i n 2 x c o s 2 x ] + [ s i n 2 x c o s 2 x c o s 2 x s i n 2 x ]

A.2. (I)  [ a b b a ] + [ a b b a ] = [ a + a b + b b + b a + a ] = [ 2 a 2 b 0 2 a ]

 

Q4.if  A = [ 1 2 3 5 0 2 1 1 1 ] , B = [ 3 1 2 4 2 5 2 0 3 ]  and  C = [ 4 1 2 0 3 2 1 2 3 ]  then compute

(A+B) and (B – C). Also, verify that A + (B – C) = (A + B) – C.

A.4  A + B = [ 1 2 3 5 0 2 1 1 1 ] + [ 3 1 2 4 2 5 2 0 3 ] = [ 1 + 3 2 1 3 + 2 5 + 4 0 + 2 2 + 5 1 + 2 1 + 0 1 + 3 ]

A + B = [ 4 1 1 9 2 7 3 1 4 ]

B−C = [ 3 1 2 4 2 5 2 0 3 ] [ 4 1 2 0 3 2 1 2 3 ]   = [ 3 4 1 1 2 2 4 0 2 3 5 2 2 1 0 ( 2 ) 3 3 ]

B−C = [ 1 2 0 4 1 2 1 2 0 ]

Now

L.H.S. = a+ (b - c) = [ 1 2 3 5 0 2 1 1 1 ] + [ 1 2 0 4 1 3 1 2 0 ]   = [ 1 1 2 2 3 + 0 5 + 4 0 1 2 + 3 1 + 1 1 + 2 1 + 0 ]

= [ 0 0 3 9 1 5 2 1 1 ]

R.H.S. = (a+ b) - c = [ 4 1 1 9 2 7 3 1 4 ] [ 4 1 2 0 3 2 1 2 3 ]   = [ 4 4 1 1 1 3 9 0 2 3 7 2 3 1 1 ( 2 ) 4 3 ]

= [ 0 0 3 9 1 5 2 1 1 ]  = L.H.S.

∴A + (B - C) = (A + B) - C

 

Q5.If  A = [ 2 3 1 5 3 1 3 2 3 4 3 7 3 2 2 3 ]  and  B = [ 2 5 3 5 1 1 5 2 5 4 5 7 5 6 5 2 5 ]  then compute 3A – 5B.

A.5. 3a - 5b = 3 × [ 2 3 1 5 3 1 3 2 3 4 3 7 3 2 2 3 ]  -  5 × [ 2 5 3 5 1 1 5 2 5 4 5 7 5 6 5 2 5 ]

= [ 3 × 2 3 3 × 1 3 × 5 3 3 × 1 3 3 × 2 3 3 × 4 3 3 × 7 3 3 × 2 3 × 2 3 ]   [ 5 × 2 5 5 × 3 5 5 × 1 5 × 1 5 5 × 2 5 5 × 4 5 5 × 7 5 5 × 6 5 5 × 2 5 ]

= [ 2 3 5 1 2 4 7 6 2 ] [ 2 3 5 1 2 4 7 6 2 ] = [ 2 2 3 3 5 5 1 1 2 2 4 4 7 7 6 6 2 2 ]  =  [ 0 0 0 6 0 0 0 0 0 ]

 

Q6.Simplify  c o s θ [ c o s θ s i n θ s i n θ c o s θ ] + s i n θ [ s i n θ c o s θ c o s θ s i n θ ]

A.6. c o s θ [ c o s θ s i n θ s i n θ c o s θ ] + s i n θ [ s i n θ c o s θ c o s θ s i n θ ]

(E)  = [ c o r 2 θ c o t θ s i n θ c o s θ s i n θ c o s 2 θ ]   + [ s i n 2 θ s i n θ c o s θ . s i n θ c o s θ s i n 2 θ ]    

= [ c o s 2 θ + s i n 2 θ c o s θ s i n θ s i n θ c o s θ c o s θ s i n θ + s i n θ c o s θ c o s 2 θ + s i n 2 θ ]

= [ 1 0 0 1 ]

 

Q7.Find X and Y, if

(i)  X + Y = [ 7 0 2 5 ]  and  X Y = [ 3 0 0 3 ]

(ii)  2 X + 3 Y = [ 2 3 4 0 ]  and  3 X + 2 Y = [ 2 2 1 5 ]

A.7. (i) x + y = [ 7 0 2 5 ]

x - y = [ 3 0 0 3 ]

Y = 1 2 [ 4 0 2 2 ] = [ 1 2 × 4 1 2 × 0 1 2 × 2 1 2 × 2 ]   = [ 2 0 1 1 ]

(ii)2x + 3y =  [ 2 3 4 0 ]  ___ (1)

2x + 2y =  [ 2 2 1 5 ]  _____ (2)

Multiplying  eqn by 2 and q n ( u )

2 × (2x+ 3y) = 2 ×  [ 2 3 4 0 ]

 4x + 6y =  [ 2 × 2 2 × 3 2 × 4 2 × 0 ]

 4x + 6y =  [ 4 6 8 0 ]   ( i i i ) .

3 × (3x+ 2y) = 3 ×  [ 2 2 1 5 ]

 9x + 6y =  [ 3 × ( 2 ) 3 × ( 2 ) 3 × ( 1 ) 3 × 5 ] = [ 6 6 3 1 5 ]   ( i v )

Subtracting  eqn  (iii) from (iv) we get,

4x+ 6y - (4x+ 6y) = [ 6 6 3 1 5 ]   [ 4 6 8 0 ]

 5x =  [ 6 4 6 6 3 8 1 5 0 ] =   [ 2 1 2 1 1 1 5 ]

x = 1 5 [ 2 1 2 1 1 1 5 ] = [ 2 × 1 5 1 2 × 1 5 1 1 × 1 5 1 5 × 1 5 ] =   [ 2 5 1 2 5 1 1 5 3 ]

From eqn  (u);

3 y = [ 2 3 4 0 ] 2 x = [ 2 3 4 0 ] [ 2 × 2 5 2 × ( 1 2 5 ) 2 × ( 1 1 / 5 ) 2 × 3 ]

= [ 2 3 4 0 ]   [ 4 5 2 4 5 2 2 5 6 ]

= [ 2 4 5 3 ( 2 4 5 ) 4 ( 2 2 5 ) 0 6 ]

= [ 5 × 2 4 5 3 × 5 + 2 4 5 4 × 5 + 2 2 5 6 ]

= [ 1 0 4 5 1 5 + 2 4 5 2 0 + 2 2 5 6 ]

= 1 3 [ 6 5 3 q 5 4 2 5 6 ] =   [ 1 3 × 6 5 1 3 × 3 9 5 1 3 × 4 2 5 1 3 × ( 6 ) ]

= [ 2 5 1 3 5 1 4 5 2 ]

 

Q8.Find X, if  Y = [ 3 2 1 4 ]  and  2 X + Y = [ 1 0 3 2 ]

A.8. Give, 2x + 4 = [ 1 0 3 2 ]

2 x = [ 1 0 3 2 ]  y  = [ 1 0 3 2 ] [ 3 2 1 4 ]   = [ 1 3 0 2 3 1 2 4 ]

x = 1 2 [ 2 2 4 2 ] = [ 2 × 1 2 2 × 1 2 4 × 1 2 2 × 1 2 ] =   [ 1 1 2 1 ]

 

Q9.Find x and y, if  2 [ 1 3 0 x ] + [ y 0 1 2 ] = [ 5 6 1 8 ]

A.9. Given, 2 [ 1 3 0 x ] +   [ y 0 1 2 ]   = [ 5 6 1 8 ]

[ 2 × 1 2 × 3 2 × 0 2 × x ]   + [ y 0 1 2 ] = [ 5 6 1 8 ]

[ 2 + y 6 + 0 2 x + 2 ] = [ 5 6 1 8 ]

Equating the corresponding elements of the matrices we get,

2 + y = 5

y = 5 - 2 = 3

And 2x + 2 = 8

2x = 8 - 2

x = 6 2  

x = 3

∅x = 3, y - 3.

 

Q10.Solve the equation for x, y, z and t, if  2 [ x z y t ] + 3 [ 1 1 0 2 ] = 3 [ 3 5 4 6 ]

A.10.  2 [ x z y t ] + 3 [ 1 1 0 2 ] = 3 [ 3 5 4 6 ]

[ 2 × x 2 × 2 2 × y 2 × t ] + [ 3 × 1 3 × ( 1 ) 3 × 0 3 × 2 ] = [ 3 × 3 3 × 5 3 × 4 3 × 6 ]

  [ 2 x 2 z 2 y 2 1 ] + [ 3 3 0 6 ] = [ 9 1 5 1 2 1 8 ] .

[ 2 x + 3 2 z 3 2 y + 0 2 1 + 6 ] = [ 9 1 5 1 2 1 8 ]

Equating the corresponding elements of the matrices  u  get,

2x + 3 = 9

2x = 9 - 3

x = 6 2

x = 3

2z - 3 = 15

2z = 15 + 3

z = 1 8 2

z = 9

2y = 12

y = 1 2 2 => y = 6

2t + 6 = 18

2t = 18 - 6

2t = 12 => t = 1 2 2  t = 6

3x + y = 5 _____ (ii)

Adding (i) and (i) we get,

2x - y + 3x + y = 10 + 5.

5x = 15

x = 1 5 5 => x = 3

5x = 15

x = 1 5 5 => x = 3

Putting x = 3 in (i) we gel,

2 × 3 - y = 10

6 - 10 = y

y = -4

 

Q12.Given  3 [ x y z w ] = [ x 6 1 2 w ] + [ 4 x + y z + w 3 ]  , find the values of x, y, z and w.

A.12. Given,  x [ x y z w ] = [ x 6 1 2 w ] + [ 4 x + y z + w 3 ] .

( B ) [ 3 x 3 y 3 z 3 w ] = [ x + 4 6 + x + y 1 + 2 + w 2 w + 3 ]

 

Q13.If F  ( x ) = [ c o s x s i n x 0 s i n x c o s x 0 0 0 1 ]  , show that F(x) F(y) = F(x + y).

A.13. Given,  f ( x ) = [ c o s x s i n x 0 s i n x c o s x 0 0 0 1 ]

So, F(y)  = [ c o s y s i n y 0 s i n y c o s y 0 0 0 1 ]

f ( x ) f ( y ) = [ c o s x s i n x 0 s i n x c o s x 0 0 0 1 ] [ c o s x s i n x 0 s i n x c o s x 0 0 0 1 ]

 

Q14.Show that

(i)  [ 5 1 6 7 ] [ 2 1 3 4 ] [ 2 1 3 4 ] [ 5 1 6 7 ]

(ii)  [ 1 2 3 0 1 0 1 1 0 ] [ 1 1 0 0 1 1 2 3 4 ] [ 1 1 0 0 1 1 2 3 4 ] [ 1 2 3 0 1 0 1 1 0 ]

 

Q15.Find  A 2  – 5A + 6I, if  A = [ 2 0 1 2 1 3 1 1 0 ]

A.15.. Given, A = [ 2 0 1 2 1 3 1 1 0 ]

A2 = AA2 = [ 2 0 1 2 1 3 1 1 0 ] [ 2 0 1 2 1 3 1 1 0 ]

[ 2 × 2 + 0 × 2 + 1 × 1 2 × 0 + 0 × 1 + 1 × ( 1 ) 2 × 1 + 0 × 3 + 1 × 0 2 × 2 + 1 × 2 + 3 × 1 2 × 0 + 1 × 1 + 3 × ( 1 ) 2 × 1 + 1 × 3 + 3 × 0 1 × 2 + ( 1 ) × 2 + 0 × 1 1 × 0 + ( 1 ) × 1 + 0 × ( 1 ) 1 × 1 + ( 1 ) × 3 + 0 × 0 ]

= [ 1 + 1 1 2 4 + 2 + 3 1 3 2 + 3 2 2 1 1 3 ] = [ 5 1 2 . 9 2 5 0 1 2 ]

 

Q16 If A = [ 1 0 2 0 2 1 2 0 3 ]  prove that  A 3 6 A 2 + 7 A + 2 I = 0

A.16.  Given A = [ 1 0 2 0 2 1 2 0 3 ]

A2 = AA = [ 1 0 2 0 2 1 2 0 3 ] [ 1 0 2 0 2 1 2 0 3 ]

= [ 1 × 1 + 0 × 0 + 2 × 2 1 × 0 + 2 × 0 + 2 × 0 1 × 2 + 0 × 1 + 2 × 3 0 × 1 + 2 × 0 + 1 × 2 a × 0 + 2 × 2 + 1 × 0 0 × 2 + 2 × 1 + 1 × 3 2 × 1 + 0 × 0 + 3 × 2 2 × 0 + 0 × 2 + 3 × 0 2 × 2 + 0 × 1 + 3 × 3 ]

= [ 1 + 4 0 2 + 6 2 4 2 + 3 2 + 6 0 4 + 9 ] = [ 5 0 8 2 4 5 8 0 1 3 ]

A3 = A2A = [ 5 0 8 2 4 5 8 0 1 3 ] [ 1 0 2 0 2 1 2 0 3 ]

= [ 5 × 1 + 0 × 0 + 8 × 2 5 × 0 + 0 × 2 + 8 × 0 5 × 2 + 0 × 1 + 8 × 3 2 × 1 + 4 × 0 + 5 × 2 2 × 0 + 4 × 2 + 5 × 0 2 × 2 + 4 × 1 + 5 × 3 8 × 1 + 0 × 0 + 1 3 × 2 8 × 0 + 0 × 2 + 0 × 0 8 × 2 + 0 × 1 + 1 3 × 3 ]

[ 5 + 1 6 0 1 0 + 2 4 2 + 1 0 8 4 + 4 + 1 5 8 + 2 6 0 1 6 + 3 9 ]   = [ 2 1 0 3 4 1 2 8 2 3 3 4 0 5 5 ]

So, A3-6A2 + 7A + 2I

= [ 2 1 0 3 4 1 2 8 2 3 3 4 0 5 5 ] 6 [ 5 0 8 2 4 5 8 0 1 3 ] + 7 [ 1 0 2 0 2 1 2 0 3 ] + 2 [ 1 0 0 0 1 0 0 0 1 ]

= [ 2 1 0 3 4 1 2 8 2 3 3 4 0 5 5 ] [ 3 0 0 4 8 1 2 2 4 3 0 4 8 0 7 8 ] + [ 7 0 1 4 0 1 4 7 1 4 0 2 1 ] + [ 2 0 0 0 2 0 0 0 2 ]

= [ 2 1 3 0 + 7 + 2 0 0 + 0 + 0 3 4 4 8 + 1 4 + 0 1 2 1 2 + 0 + 0 8 2 4 + 1 4 + 2 2 3 3 0 + 7 + 0 3 4 4 8 + 1 4 + 0 0 0 + 0 + 0 5 5 7 8 + 2 1 + 2 ]

= [ 0 0 0 0 0 0 0 0 0 ] = 0  (2000 matrix )

Hence proud

 

Q17.If  A = [ 3 2 4 2 ]  and  I = [ 1 0 0 1 ] , find k so that A 2 = kA − 2I

A.17. Given,A = [ 3 2 4 2 ]

A2 = A. A = [ 3 2 4 2 ] [ 3 2 4 2 ]

= [ 3 × 3 + ( 2 ) × 4 3 × ( 2 ) + ( 2 ) × ( 2 ) 4 × 3 + ( 2 ) × 4 4 × ( 2 ) + ( 2 ) × ( 2 ) ]

= [ 9 8 6 + 4 1 2 8 8 + 4 ] = [ 1 2 4 4 ] .

So,A2= xA2I.

[ 1 2 4 4 ] = u [ 3 2 4 2 ] 2 [ 1 0 0 1 ] .

[ 1 2 4 4 ] = [ 3 x 2 x 4 x 2 x ] [ 2 0 0 2 ] = [ 3 x 2 2 x 4 x 2 x 2 ] .

 

Q19.A trust fund has  30,000 that must be invested in two different types of bonds.

The first bond pays 5% interest per year, and the second bond pays 7% interest

per year. Using matrix multiplication, determine how to divide  30,000 among

the two types of bonds. If the trust fund must obtain an annual total interest of:

(a) 1800 (b) 2000

A.19.  let x be the investment in the first bond out of total `30,000.

(M) then, investment use for the second bond = ` 30,000 - x.

Hence, investment matrix A =  [ x 3 0 , 0 0 0 x ] 1 × 2

As there is 5% and 7% interest paid the first and second , (per year)

= [ x × 5 1 0 0 + ( 3 0 0 0 0 x ) × 7 1 0 0 ] 1 × 1 = 5 x + 2 , 1 0 , 0 0 0 7 x 1 0 0 = 2 , 1 0 , 0 0 0 2 x 1 0 0 .

Manual total interest = `  2 1 0 , 0 0 0 2 x 1 0 0 .

(a) Given, manual total interest = ` 1800.

  ` 2 , 1 0 , 0 0 0 2 x 1 0 0 = ` 1 8 0 0 .

` 2 , 1 0 , 0 0 0 2 x = ` 1 . 8 0 , 0 0 0

` 210.000 - `180,000 = 2x

x = ` 3 0 , 0 0 0 2

x = ` 15, 000

∴investment in first and second bond is x = 15,000 and ` 30,000 –x = ` 30,000 - `15,000 - ` 15,000 respectively.

(B) given ,Annual total interest = ` 2000.

` 2 , 1 0 , 0 0 0 2 x 1 0 0 = ` 2 0 0 0 .

` 2,10, 000 -  ` 2,00,000

` 2,10, 000  - `2; 000 = 2x

x = ` 1 0 , 5 0 0 2

x = ` 5,000

∴investment in first and second hand is x =  `  5,000 and.  ` 30,000 - x = 30,000 - `  5,000 = 25,000 respectively

 

Q20.The bookshop of a particular school has 10 dozen chemistry books, 8 dozen physics books, 10 dozen economics books. Their selling prices are `80, `60 and`40 each respectively. Find the total amount the bookshop will receive from selling all the books using matrix algebra.

Assume X, Y, Z, W and P are matrices of order 2 × n, 3 × k, 2 × p, n × 3 and p × k, respectively. Choose the correct answer in Exercises 21 and 22.

= (9600 + 5760 + 4800)

= ` 20160

Order of matrices ,  x 2 × n y 3 × x z 2 × p w n × 3 p p × x .

 

Q21.The restriction on n, k and p so that PY + WY will be defined are:

(A) k = 3, p = n  (B) k is arbitrary, p = 2 (C) p is arbitrary, k = 3  (D) k = 2, p = 3

A.21. For, PY + WY to be defined

(E) P p × k ⋅Y 3 × x  should be seen that number of columns of p

Should, be equal to no of nous of yi.e,[x = 3]

n × 3 and (PY)(p × x)

similarity, in W 3Y xwe  see thatno of columns of

W = no of rows in Y and (WY) n × x.

Again,PY + WY is defined if order of (PY) p × k and (WY)n × u are the sameie ,P = n

so, option a is correct .

 

Q22.If n = p, then the order of the matrix 7X – 5Z is:

(A) p × 2  (B) 2 × n  (C) n × 3  (D) p × n

A.22. The order of 7x - 5z will be same as order of x and z

as has order 2 × n and z has order 2 × p.and given n = p.

7x - 5z has order 2 × n

∴option b is correct.

 

 

Maths Ncert Solutions class 12th Logo

Class 12 Math Chapter 3 Matrices Exercise 3.3 Solutions

Class 12 Chapter 3 Matrices Exercise 3.3 delves into the multiplication of matrices, Which is the key concept of Matrix. Exercise 3.3 deals with Matrix Multiplication; Scalar & Vector, Conditions for Multiplication, Properties of Matrix Multiplication, and other applications of Matrix multiplication. Matrices Exercise 3.3 Solutions includes 12 Questions (10 Short Answers, 2 MCQs) in total, Students can check complete solution of the exercise;

Matrices Exercise 3.3 Solutions

Q1.Find the transpose of each of the following matrices:

(i)  [

5 1 2 1 ]
]
 (ii)  [ 1 1 2 3 ]  (iii)  [ 1 5 6 √3 5 6 2 3 1 ]

A.1. (i) Let A=  [ 5 1 2 1 ] [ 3 × 1 ]

Then, A’ = [5 ½ − 1] 1 × 3

(ii) Let A =  [ 1 1 2 3 ] 2 × 2

Then, A’ =  [ 1 2 1 3 ] 2 × 2

(iii) Let A =  [ 1 5 6 √3 5 6 2 3 1 ]

Then A’ =  [ 1 √3 2 5 5 3 6 6 1 ]

 

Q2.If  [ 1 2 3 5 7 9 2 1 1 ]  and  [ 4 1 5 1 2 0 1 3 1 ]  , then verify that

(i) (A + B)'= A'+ B', (ii) (A – B) '= A'– B'

A.2. Given, A =  [ 1 2 3 5 7 9 2 1 1 ]  and B =  [ 4 1 1 1 2 3 5 0 1 ]

Then, A’ =  [ 1 5 2 2 7 1 3 9 1 ]  and B =  [ 4 1 1 1 2 3 5 0 1 ]

A + B =  [ 1 2 3 5 7 9 2 1 1 ]  +  [ 4 1 5 1 2 0 1 3 1 ]  =  [ 1 4 2 + 1 3 5 5 + 1 7 + 2 9 + 0 2 + 1 1 + 3 1 + 1 ]  =  [ 5 3 2 6 9 9 1 4 2 ]

LHS. = (A + B)’ =  [ 5 6 1 3 9 4 2 9 2 ]

RHS = A’+ B’ =  [ 1 5 2 1 7 1 3 9 1 ] + [ 4 1 1 1 2 3 5 0 1 ] = [ 1 4 5 + 1 2 + 1 2 + 1 7 + 2 1 + 3 3 5 9 + 0 1 + 1 ]  =  [ 5 6 1 3 9 4 2 9 2 ]  = L H S

 (A + B)’ = A’+ B’

(ii) A – B =  [ 1 2 3 5 7 9 2 1 1 ] [ 4 1 5 1 2 0 1 3 1 ] = [ 1 ( 4 ) 2 1 3 ( 5 ) 5 1 7 2 9 0 2 1 1 3 1 1 ] = [ 3 1 8 4 5 9 3 2 0 ]

L.H.S. = (A − B)’ =  [ 3 4 3 1 5 2 8 9 0 ]

R.H.S. = A’ − B’ =  [ 1 5 2 2 7 1 3 9 1 ]   [ 4 1 1 1 2 3 5 0 1 ] =   [ 1 ( 4 ) 5 1 2 1 2 1 7 2 1 3 3 ( 5 ) 9 0 1 1 ] = [ 3 4 3 1 5 2 8 9 0 ]

(A − B)’ = A’ − B’

 

Q6.If (i)  [ c o s α s i n α s i n α c o s α ]  , then verify that A' A = I

(ii) If  [ s i n α c o s α c o s α s i n α ]  , then verify that A' A = I

A.6. (i) Given, A =  [ c o s α s i n α s i n α c o s α ]

Then, A’ =  [ c o s α s i n α s i n α c o s α ]

∴A’ A =  [ c o s α s i n α s i n α c o s α ] [ c o s α s i n α s i n α c o t α ]

[ c o s α c o s α + ( s i n α ) ( s i n α ) c o s α s i n α + ( s i n α ) c o s α s i n α c o s α + c o s α ( s i n α ) s i n α s i n α + c o s α c o s α ]

[ c o s 2 α + s i n 2 α c o s α s i n α s i n α c o s α s i n α c o s α c o s α s i n α s i n 2 α + c o s 2 α ]

[ 1 0 0 1 ]   { c o s 2 x + s i n 2 x = 2 }

= A ’ A = 1.

Given,

(ii) 1 A =  [ s i n α c o s α c o t α s i n α ]

Then, A’ =  [ s i n α c o s α c o t α s i n α ]

∴A’ A =  [ s i n α c o s α c o t α s i n α ] [ s i n α c o s α c o s α s i n α ]

[ s i n α s i n α + ( c o s α ) ( c o s α ) s i n α c o s α + ( c o s α ) c o s α c o s α s i n α + s i n α ( c o s α ) c o s α c o s α + s i n α s i n α ]

[ s i n 2 α + c o s 2 α s i n α c o t α c o s α s i n α c o s α s i n α s i n α c o s α c o s 2 α + s i n 2 α ]

[ 1 0 0 1 ]   { c o s 2 x + c o s c o s 2 x = 1 } .

   A’ A. = I

 

Q7.(i) Show that the matrix  [ 1 1 5 1 2 1 5 1 3 ]  is a symmetric matrix.

(ii) Show that the matrix  [ 0 1 1 1 0 1 1 1 0 ]  is a skew symmetric matrix.

A.7. (i) Given A = [ 1 1 5 1 2 1 5 1 3 ]

Then, A’ =  [ 1 1 5 1 2 1 5 1 3 ]

∴A’ = A.

Here, A is symmetric matrix

Given, A =  [ 0 1 1 1 0 1 1 1 0 ]

Then, A’ =  [ 0 1 1 1 0 1 1 1 0 ] = ( 1 ) [ 0 1 1 1 0 1 1 1 0 ]

 A’ = (1) A.

 A’ = A.

Hers A is a show symmetric matrix.

 

Q8.For the matrix  [ 1 5 6 7 ]  verify that

(i) (A + A') is a symmetric matrix

(ii) (A – A') is a skew symmetric matrix

A.8. Given, A =  [ 1 5 6 7 ]

Then, A’ =  [ 1 6 5 7 ]

Let P = A + A’ =  [ 1 5 6 7 ] + [ 1 6 5 7 ] = [ 1 + 1 5 + 6 6 + 5 7 + 7 ] = [ 2 1 1 1 1 1 4 ]

So, P’ =  [ 2 1 1 1 1 1 4 ]  = P

i e, ( A + A’ )’ = A + A’.

Hence, A + A’ is symmetric matrix.

Let Q = A A’ =  [ 1 5 6 7 ] [ 1 6 5 7 ] = [ 1 1 5 6 6 5 7 7 ] = [ 0 1 1 0 ] .

So,Q1 = [ 0 1 1 0 ]  = (1)  [ 0 1 1 0 ]  = (1) Q.

Q1 = Q.

i e, (A A’)’ = -(A - A’).

Have, A - A’ is a show symmetric matrix

 

Q9.Find  1 2 (A+A ' )  and  1 2 (A −A ' ) , when A= [ 0 a b a 0 c b c 0 ]

A.9. Given, A =  [ 0 a b a 0 c b c 0 ]

Then, A’ =  [ 0 a b a 0 c b c 0 ]

So, A + A’ =  [ 0 a b a 0 c b c 0 ] + [ 0 a b a 0 c b c 0 ] = [ 0 a a b b a + a 0 c c b + b c + c 0 ] = [ 0 0 0 0 0 0 0 0 0 ]

1 2  (A + A’) =  1 2 [ 0 0 0 0 0 0 0 0 0 ] = [ 0 0 0 0 0 0 0 0 0 ] .

And A - A’ = [ 0 a b a 0 c b c 0 ] [ 0 a b a 0 c b c 0 ] = [ 0 a ( a ) b ( b ) a a 0 c ( c ) b b c c 0 ]

[ 0 2 a 2 b 2 a 0 2 c 2 b 2 c 0 ]

1 2 (A - A’) = 1 2 [ 0 2 a 2 b 2 a 0 a 2 c 2 b 2 c 0 ]  =  [ 0 a b a 0 c b c 0 ] .

 

Q10. Express the following matrices as the sum of a symmetric and a skew symmetric

matrix:

(i)  [ 3 5 1 1 ]  (ii)  [ 6 2 2 2 3 1 2 1 3 ]

(iii)  [ 3 3 1 2 2 1 4 5 2 ]  (iv)  [ 1 5 1 2 ]

Choose the correct answer in the Exercises 11 and 12.

A.10. (i) Let A =  [ 3 5 1 1 ] .

Then, A’ =  [ 3 1 5 1 ] .

Let P =  1 2  (A + A’) =  1 2   { [ 3 5 1 1 ] + [ 3 1 5 1 ] } = 1 2 [ 3 + 3 5 + 1 1 + 5 1 + ]

1 2 [ 6 6 6 2 ] = [ 3 3 3 1 ] .

Then, P’ =  [ 3 3 3 1 ]  = P.

∴ P =  1 2  (A + A’) is symmetric matrix

Let Q =  1 2  (A + A’) =  1 2 { [ 3 5 1 1 ] [ 3 1 5 1 ] } = 1 2 [ 3 3 5 1 1 5 1 ( 1 ) ]

1 2 [ 0 4 4 0 ] = [ 0 2 2 0 ] .

Then Q.’ =  [ 0 2 2 0 ] = (-1)  [ 0 2 2 0 ] = (-1) Q.

 Q.’ = Q,

∴ Q =  1 2 (A - A’) is a symmetric matrix

Now, P + Q =  1 2  (A + A’) +  1 2 (A - A’)

 P + Q =  [ 3 3 3 1 ] + [ 0 2 2 0 ] = [ 3 + 0 3 + 2 3 2 1 + 0 ] = [ 3 5 1 1 ]  = A.

This A is represented as a sun of symmetric and skew symmetric matrix

Let A = [ 6 2 2 2 3 1 2 1 3 ] .

Then A’ =  [ 6 2 2 2 3 1 2 1 3 ] .

Now, A + A’ =  [ 6 2 2 2 3 1 2 1 3 ] + [ 6 2 2 2 3 1 2 1 3 ]

[ 6 + 6 2 + ( 2 ) 2 + 2 2 + ( 2 ) 3 + 3 1 + ( 1 ) 2 + 2 1 + ( 1 ) 3 + 3 ]  =  [ 1 2 4 4 4 6 2 4 2 6 ]

Let P =  1 2  (A + A’) =  1 2 [ 1 2 4 4 4 6 2 4 2 6 ] = [ 6 2 2 2 3 1 2 1 3 ]

Then, P’ =  [ 6 2 2 2 3 1 2 1 3 ]  = P’

∴ P =  1 2  (A + A’) is asyntri matrix.

A - A’ = [ 6 2 2 2 3 1 2 1 3 ] [ 6 2 2 2 3 1 2 1 3 ] = [ 0 0 0 0 0 0 0 0 0 ]

Let Q =  1 2 (A - A’) = 1 2 [ 0 0 0 0 σ 0 σ 0 0 ] = [ 0 0 0 0 0 0 0 0 0 ] .

Q’ = (-1) [ 0 0 0 0 0 0 0 0 0 ] = -Q.

Q’ = -Q.

∴ Q =  1 2 (A - A’) is a skew symmetric matrix

Have P + Q =  [ 6 2 2 2 3 1 2 1 3 ] + [ 0 0 0 0 0 0 0 0 0 ] = [ 6 2 2 2 3 1 2 1 3 ]  = A.

Then A is represented as a sum of symmetric & skew symmetric matrix

(iii) Let A =  [ 3 3 1 2 2 1 4 5 2 ]

Then, A’ =  [ 3 2 4 3 2 5 1 1 2 ]

Let P =  1 2  (A + A’) =  1 2 { [ 3 3 1 2 2 1 4 5 2 ] + [ 3 2 4 3 2 5 1 1 2 ] }

1 2 [ 3 + 3 3 2 1 4 2 + 3 2 2 1 5 4 1 5 + 1 2 + 2 ] = 1 2 [ 6 1 5 1 4 4 5 4 4 ]

[ 3 1 2 5 2 1 2 2 2 5 2 2 2 ]

Then P’ =  [ 3 1 2 5 2 1 2 2 2 5 2 2 2 ]  = P.

∴ P =  1 2  (A + A’ ) is symmetric matrix.

Let Q =  1 2 (A - A’) = 1 2 { [ 3 3 1 2 2 1 4 4 5 2 ] [ 3 2 4 3 2 5 1 1 2 ] }

1 2 [ 3 3 3 ( 2 ) 1 ( 4 ) 2 3 2 ( 2 ) 1 ( 5 ) 4 ( 1 ) 5 1 2 2 ] .

1 2 [ 0 5 3 5 0 6 3 6 0 ] = [ 0 5 2 3 2 5 2 0 3 3 2 3 0 ]

Then Q’ =  [ 0 5 2 3 2 5 2 0 3 3 2 3 0 ] = (-1)  [ 0 5 2 3 2 5 2 0 3 3 2 3 0 ] = (-1) Q.

 Q’ = Q.

∴ Q =  1 2 (A - A’) is a skew symmetric matrix

∴ P + Q = symmetric

= ..

[ 3 6 2 2 2 : 2 2 1 / 2 5 2 ]  =  [ 3 3 1 2 2 1 4 5 2 ]  = A.

Thus A is represented as a sum of symmetric and skew symmetric matrix.

Let A =  [ 1 5 1 2 ]

Then A’ =  [ 1 1 5 2 ]

Let P =  1 2  (A + A’) =  1 2 { [ 1 5 1 2 ] + [ 1 1 5 2 ] } = 1 2 [ 1 + 1 5 1 1 + 5 2 + 2 ]

1 2 [ 2 4 4 4 ] = [ 1 2 2 2 ] .

Then, P’ =  [ 1 2 2 2 ]  = P.

∴ P =  1 2  (A +A ‘) is symmetric matrix

1 2 [ 0 6 6 0 ] = [ 0 3 3 0 ] .

Thus, Q’ =  [ 0 3 3 0 ]  = (-1)  [ 0 3 3 0 ] = (-1) Q.

Q’ = -Q.

∴ Q =  1 2 (A - A’) is a skew symmetric matrix

∴ P + Q =  [ 1 2 2 2 ] + [ 0 3 3 0 ] = [ 1 + 0 2 + 3 2 3 2 + 0 ]

[ 1 5 1 2 ]  = A.

Thus A is represented as a sum of symmetric and skew symmetric matrix

 

Q11.If A, B are symmetric matrices of same order, then AB – BA is a

(A) Skew symmetric matrix (B) Symmetric matrix

(C) Zero matrix (D) Identity matrix

A.11. Given A and B are symmetric matrices,

(E) Then, A’ = A and B’ = B.

Now, (AB - BA)’ = (AB)’-  (BA)’

= B’A’ - A’B’.

= BA - AB

(AB - BA)’ = -(AB - BA)

AB - BA is a skew symmetric matrix

∴ Option A is correct.

 

Q12.If  [ c o s α s i n α s i n α c o s α ]  and A + A'= I, then the value of  is

A.12. Given, A =  [ c o s α s i n α s i n α c o s α ]  . Then, A’ =  [ c o s α s i n α s i n α c o s α ]

and A + A’ = I.

  [ c o s α s i n α s i n α c o s α ]  +  [ c o s α s i n α s i n α c o s α ]  =  [ 1 0 0 1 ] .

  [ 2 c o s α + c o s α s i n α + s i n α s i n α s i n α c o s α + c o s α ]  =  [ 1 0 0 1 ]

  [ 2 c o t α 0 0 2 c o t α ]  =  [ 1 0 0 1 ] .

Equating the corresponding element of the matrix we get,

2 cos  α  = 1

 cos  α = 1 2

  α = cos - 1 1 2 = cos-1 ( c o s 3 )

Option B is correct

 

Maths Ncert Solutions class 12th Logo

Class 12 Math Chapter 3 Matrices Exercise 3.4 Solutions

Class 12 Chapter 3 Exercise 3.4 involves the transpose of a matrix, the properties of transpose, and the concepts of symmetric and skew-symmetric matrices. these topics and this exercise are very important for CBSE board exams. Matrices exercise 3.4 Solutions includes 18 Questions (4 Long, 13 Short, 1 MCQ). Students can check the complete solution of exercise 3.4 below;

Matrices Exercise 3.4 solutions

Q1.  [ 1 1 2 3 ] .

A.1. Let A=  [ 1 1 2 3 ] .

We write A = IA.

[ 1 1 2 3 ] = [ 1 0 0 1 ] 1 A .

[ 1 1 2 2 ( 1 ) 3 2 ( 1 ) ] = [ 1 1 0 2 ( 1 ) 1 0 ] (R2 → R2 –2R1)

[ 1 1 0 5 ] = [ 1 0 2 1 ] A .

[ 1 1 0 5 8 5 ] = [ 1 0 2 5 1 5 ]A ( R 2 1 5 R 2 )

[ 1 1 0 1 ] = [ 1 0 2 5 1 5 ] .

[ 1 + 0 1 + 1 0 1 ] = [ 1 2 / 5 0 + 1 / 5 2 5 1 5 ] A ( R 1 R 1 + R 2 )

[ 1 0 0 1 ] = [ 3 5 1 5 2 5 1 5 ]A .

∴ A-1  = [ 3 5 1 5 2 5 1 5 ]

 

Q2.  [ 2 1 1 1 ] .

A.2. Let A =  [ 2 1 1 1 ] .

We write, A = IA.

  [ 2 1 1 1 ]  =  [ 1 0 0 1 ]  A.

  [ 2 1 1 1 1 1 ]  =  [ 1 0 0 1 0 1 ] A (R1→R1–R2)

  [ 1 0 1 1 ]  =  [ 1 1 0 1 ]  A.

  [ 1 0 1 1 1 0 ]  =  [ 1 1 0 1 1 ( 1 ) ] = A (R2→R2–R1).

  [ 1 0 0 1 ] = [ 1 1 1 2 ]  A.

∴ A-1  = [ 1 1 1 2 ] .

 

Q3.  [ 1 3 2 7 ] .

A.3. Let A =  [ 1 3 2 7 ] .

We write, A = IA.

  [ 1 3 2 7 ] = [ 1 0 0 1 ]  A.

[ 1 3 2 2 ( 1 ) 7 2 ( 3 ) ] = [ 1 0 0 2 ( 1 ) 1 0 ] A (R2→R2–2R1)

[ 1 3 0 1 ]  =  [ 1 0 2 1 ]  A.

[ 1 0 3 3 ( 1 ) 0 1 ]  =  [ 1 3 ( 2 ) 0 3 ( 1 ) 2 1 ] A(R1→R1–3R2)

[ 1 0 0 1 ]  =  [ 7 3 2 1 ]  A.

∴A-1 = [ 7 3 2 1 ] .

 

Q4.  [ 2 3 5 7 ]

A.4. Let A =  [ 2 3 5 7 ]

We write, A = 1A.

[ 2 3 5 7 ]  =  [ 1 0 0 1 ]  A.

[ 5 7 2 3 ]  =  [ 0 1 1 0 ] A((R2 R1)

  [ 5 2 ( 2 ) 7 2 ( 3 ) 2 3 ]  =  [ 0 2 ( 1 ) 1 2 ( 0 ) 1 0 ]  A. (R1→R1–2R2)

  [ 1 1 2 3 ]  =  [ 2 1 1 0 ]  A.

  [ 1 1 2 2 ( 1 ) 3 2 ( 1 ) ]  =  [ 2 1 1 2 ( 2 ) 0 2 ( 1 ) ]  A.(R2→R2–2R1)

  [ 1 1 0 1 ]  =  [ 2 1 5 2 ]  A.

  [ 1 0 1 1 0 1 ]  =  [ 2 5 1 ( 2 ) 5 2 ]  A(R1→R1–R2)

  [ 1 0 0 1 ]  =  [ 7 3 5 2 ]  A.

∴ A-1 = [ 7 3 5 2 ]

 

Q5.  [ 2 1 7 4 ] .

A.5. Let A =  [ 2 1 7 4 ] .

We write, A = IA,

  [ 2 1 7 4 ]  =  [ 1 0 0 1 ]  A.

  [ 7 4 2 1 ]  =  [ 0 1 1 0 ]  A. (R1   R2)

  [ 7 3 ( 2 ) 4 3 ( 1 ) 2 1 ]  =  [ 0 3 ( 1 ) 1 3 ( 0 ) 1 0 ]  A.(R1→R1 3R2)

  [ 1 1 2 1 ]  =  [ 3 1 1 0 ]  A.

  [ 1 1 2 2 ( 1 ) 1 2 ( 1 ) ]  =  [ 3 1 1 2 ( 3 ) 0 2 ( 1 ) ]  A. (R2→R2 2R1)

  [ 1 1 0 1 ]  =  [ 3 1 7 2 ]  A.

  [ 1 1 0 1 ]  =  [ 3 1 7 2 ]  A. (R2→(1)R2)

  [ 1 0 1 1 0 1 ]  =  [ 3 ( 7 ) 1 2 7 2 ]  A. (R1→R1R2)

  [ 1 0 0 1 ]  =  [ 4 1 7 2 ]  A.

∴A-1 = [ 4 1 7 2 ]

 

Q6.  [ 2 5 1 3 ] .

A.6. Let A =  [ 2 5 1 3 ] .

We write, A = IA

  [ 2 5 1 3 ]  =  [ 1 0 0 1 ]  A.

  [ 1 3 2 5 ]  =  [ 0 1 1 0 ]  A. (R1   R2)

  [ 1 3 2 2 ( 1 ) 5 2 ( 3 ) ]  =  [ 0 1 1 2 ( 0 ) 0 2 ( 1 ) ]  A. (R2→R22R1)

  [ 1 3 0 1 ]  =  [ 0 1 1 2 ]  A.

  [ 1 3 0 1 ]  =  [ 0 1 1 2 ]  A. (R2→ (1)R2)

  [ 1 3 ( 0 ) 3 3 ( 1 ) 0 1 ]  =  [ 0 3 ( 1 ) 1 3 ( 2 ) 1 2 ]  A. (R1→R13R2)

  [ 1 0 0 1 ]  =  [ 3 5 1 2 ]  A.

∴ A-1 = [ 3 5 1 2 ] .

 

Q7.  [ 3 1 5 2 ]

A.7. Let A =  [ 3 1 5 2 ]

We write A = IA.

  [ 3 1 5 2 ]  =  [ 1 0 0 1 ]  A.

  [ 2 × 3 2 × 1 5 2 ]  =  [ 2 × 1 2 × 0 0 1 ]  A. (R1→2R1)

  [ 6 2 5 2 ]  =  [ 2 0 0 1 ]  A.

  [ 6 5 2 2 5 2 ]  =  [ 2 0 0 1 0 1 ]  A. (R1→R1R2)

  [ 1 0 5 2 ] = [ 2 1 0 1 ]  A.

  [ 1 0 5 5 ( 1 ) 2 5 ( 0 ) ]  =  [ 2 1 0 5 ( 2 ) 1 5 ( 1 ) ] A.(R2→R2 - 5R1)

  [ 1 0 0 2 ]  =  [ 2 1 1 0 6 ]  A.

  [ 1 0 0 1 ]  =  [ 2 1 5 3 ]  A.  ( R 2 1 2 R 2 )

∴ A-1 = [ 2 1 5 3 ] .

 

Q8.  [ 4 5 3 4 ]

A.8. Let A =  [ 4 5 3 4 ]

We write A = IA

  [ 4 5 3 4 ]  =  [ 1 0 0 1 ]  A.

  [ 4 3 5 4 3 4 ]  =  [ 1 0 0 1 0 1 ] A. (R1→R2 - R2)

  [ 1 1 3 4 ]  =  [ 1 1 0 1 ]  A.

  [ 1 1 3 3 ( 1 ) 4 3 ( 1 ) ]  =  [ 1 1 0 3 ( 1 ) 1 3 ( 1 ) ] A. (R2→R2 - 3R1)

  [ 1 1 0 1 ]  =  [ 1 1 3 4 ]  A.

  [ 1 0 1 1 0 1 ]  =  [ 1 ( 3 ) 1 4 3 4 ] A. (R1→R1 - R2)

  [ 1 0 0 1 ]  =  [ 4 5 3 4 ]  A.

∴ A-1 = [ 4 5 3 4 ]

 

Q9.  [ 3 1 0 2 7 ]

A.9. Let A =  [ 3 1 0 2 7 ]

We write, A = IA.

  [ 3 1 0 2 7 ]  =  [ 1 0 0 1 ]  A.

  [ 3 2 1 0 7 2 7 ]  =  [ 1 0 0 1 0 1 ]  A.  ( R 1 R 1 R 2 )

  [ 1 3 2 7 ] = [ 1 1 0 1 ]  A.

  [ 1 3 2 2 ( 1 ) 7 2 ( 3 ) ]  =  [ 1 1 0 2 ( 1 ) 1 2 ( 1 ) ] A. (R2→R2 - 2R1)

  [ 1 3 0 1 ] = [ 1 1 2 3 ]  A.

  [ 1 3 ( 0 ) 3 3 ( 1 ) 0 1 ]  =  [ 1 3 ( 2 ) 1 3 ( 3 ) 2 3 ]  A.

  [ 1 0 0 1 ]  =  [ 7 1 0 2 3 ]  A.

∴ A-1 = [ 7 1 0 2 3 ]

 

Q10.  [ 3 1 4 2 ]

A.10. Let A =  [ 3 1 4 2 ]

We write A = IA.

  [ 3 1 4 2 ]  =  [ 1 0 0 1 ]  A.

  [ 3 4 1 + 2 4 2 ]  =  [ 1 + 0 0 + 1 0 1 ]  A. (R1→R1+R2)

  [ 1 1 4 2 ]  =  [ 1 1 0 1 ]  A.

  [ 1 1 4 2 ] = [ 1 1 0 1 ]  A. (R1→(1)R1)

  [ 1 1 4 + 4 ( 1 ) 2 + 4 ( 1 ) ]  =  [ 1 1 0 + 4 ( 1 ) 1 + 4 ( 1 ) ]  A. (R2→R2 + 4R1)

  [ 1 1 0 2 ]  =  [ 1 1 4 3 ]  A.

  [ 1 1 0 1 ]  =  [ 1 1 2 3 2 ]  A.  ( R 2 ( 1 2 ) R 2 )

  [ 1 + 0 1 + 1 0 1 ] = [ 1 + 2 1 + 3 2 2 3 2 ]  A. (R1→R1 + R2)

[ 1 0 0 1 ] = [ 1 1 2 2 3 2 ]  A.

∴ A-1 = [ 1 1 2 2 3 2 ]

 

Q11.  [ 2 6 1 2 ]

A.11. Let A =  [ 2 6 1 2 ]

We write, A = IA.

[ 2 6 1 2 ] = [ 1 0 0 1 ]  A.

[ 2 1 6 ( 2 ) 1 2 ]   = [ 1 0 0 1 0 1 ] (R1   R1 - R2)

[ 1 4 1 2 ] = [ 1 1 0 1 ]  A.

[ 1 4 1 1 2 ( 4 ) ] = [ 1 1 0 1 1 ( 1 ) ] A. (R2        R2 ---------  R1)

[ 1 4 0 2 ] = [ 1 1 1 2 ]  A.

[ 1 4 0 1 ] = [ 1 1 1 2 1 ] A. (R2 -> 1 2  R1)

[ 1 + 4 ( 0 ) 4 + 4 ( 1 ) 0 1 ] = [ 1 + 4 ( 1 2 ) 1 + 4 ( 1 ) 1 2 1 ] A. (R1     R1 + 4R2)

[ 1 0 0 1 ] = [ 1 3 1 2 1 ]  A.

∴A-1 = [ 1 3 1 2 1 ] .

 

Q12.  [ 6 3 2 1 ]

A.12. Let A =  [ 6 3 2 1 ]

We write A = IA.

[ 6 3 2 1 ] = [ 1 0 0 1 ]  A.

[ 6 6 3 6 2 1 ] = [ 1 6 0 6 0 1 ]  A.  ( R 1 1 6 R 1 )

[ 1 1 2 2 1 ] = [ 1 6 0 0 1 ]  A.

[ 1 1 2 2 + 2 ( 1 ) 1 1 + 2 ( 1 2 ) ]   [ 1 6 0 0 + 2 ( 1 6 ) 1 + 2 ( 0 ) ] A. (R2       R2 + 2R1)

[ 1 1 2 0 0 ] = [ 1 6 0 1 3 1 ]  A.

As all the elements of 2nd row on the lift side matrix are 2000, A-1 does not exit .

 

Q13.  [ 2 3 1 2 ]

A.13. Let A =  [ 2 3 1 2 ]

We write A = IA.

[ 2 3 1 2 ] = [ 1 0 0 1 ]  A .

[ 2 + 2 ( 1 ) 3 + 2 ( 2 ) 1 2 ] = [ 1 + 2 ( 0 ) 0 + 2 ( 1 ) 0 1 ]  A  ( R 1 R 1 + 2 R 2 )

[ 0 1 1 2 ] [ 2 1 3 + 2 1 2 ] = [ 1 + 0 0 + 1 0 1 ] A. (R1    R1 + R2)

[ 1 1 1 2 ] = [ 1 1 0 1 ]  A.

[ 1 1 1 + 1 2 1 ] = [ 1 1 0 + 1 1 + 1 ] A .(R2      R2 + R1)

[ 1 1 0 1 ] = [ 1 1 1 2 ]  A .

[ 1 + 0 1 + 1 0 1 ] = [ 1 + 1 1 + 2 1 2 ] A. (R1       R1 + R2)

[ 1 0 0 1 ] = [ 2 3 1 2 ]  A .

∴A-1 = [ 2 3 1 2 ]

 

Q14.  [ 2 1 4 2 ]

A.14. Let A =  [ 2 1 4 2 ]

We write, A = IA.

[ 2 1 4 2 ] = [ 1 0 0 1 ]  A.

[ 1 1 2 4 2 ] = [ 1 2 0 0 1 ]  A.  ( R 1 1 2 R 1 )

[ 1 1 2 4 4 ( 1 ) 2 4 ( 1 2 ) ] = [ 1 2 0 0 4 ( 1 2 ) 1 4 ( 0 2 ) ] A. (R2       R2 --->4R1)

[ 1 1 2 0 0 ] = [ 1 2 0 2 1 ]  A.

∴A-1 does not exit

 

Q15.  [ 2 3 3 2 2 3 3 2 2 ]

A.15. Let A = [ 2 3 3 2 2 3 3 2 2 ]

We write, A = IA

[ 2 3 3 2 2 3 3 2 2 ] = [ 1 0 0 0 1 0 0 0 1 ]  A.

[ 3 2 2 2 2 3 2 3 3 ] = [ 0 0 1 0 1 0 1 0 0 ]  A.  [ R 3 R 1 )

[ 3 2 2 2 2 3 2 2 3 2 3 3 ] [ 0 0 0 1 1 0 0 1 0 1 0 0 ] A. (R1   R1 -->R2)

[ 1 4 1 2 2 3 2 3 3 ] = [ 0 1 1 0 1 0 1 0 0 0 ]  A.

| 1 4 1 2 2 ( 1 ) 2 + 2 ( 4 ) 3 2 ( 1 ) 2 2 ( 1 ) 3 + 2 ( 4 ) 3 2 ( 1 ) | = [ 0 1 1 0 2 ( 0 ) 1 2 ( 1 ) 0 2 ( 1 ) 1 2 ( 0 ) 0 2 ( 1 ) 0 2 ( 1 ) ]  A.

( R 2 R 2 2 R 1

R 3 R 3 2 R 1 )

[ 1 4 1 0 1 0 5 0 5 5 ] = [ 0 1 1 0 3 2 1 2 2 ]  A.

1 : x 2 3 6 + y 2 1 6 = 1

[ 1 4 1 0 0 1 0 5 5 5 0 5 5 ] = [ 0 1 1 0 1 3 2 2 ( 2 ) 1 2 2 ] A. (R2   R2 --->R3)

[ 1 4 1 0 5 0 0 5 5 ] = [ 0 1 1 1 1 0 1 2 2 ]  A.

[ 1 4 1 0 1 0 0 1 1 ] = [ 0 1 1 1 5 1 5 0 1 5 2 5 2 5 ]  A.  ( R 2 1 5 R 2 R 3 1 5 R 3 )

[ 1 4 1 0 1 0 0 0 1 1 1 0 ] = [ 0 1 1 1 5 1 5 0 1 / 5 ( 1 5 ) 2 5 1 5 0 ( 2 5 ) 0 ] A. (R3       R3 -->R2)

[ 1 4 1 0 1 0 0 0 1 ] = [ 0 1 1 1 5 1 5 0 2 5 1 5 2 5 ]  A.

[ 1 + 0 4 + 0 1 + 1 0 1 0 0 0 1 ] = [ 0 + 2 5 1 + 1 5 1 + ( 2 5 ) 1 5 1 5 0 2 5 1 5 2 5 ] A. (R1      R1 + R3)

[ 1 4 0 0 1 0 0 0 1 ] = [ 2 5 4 5 3 5 1 5 1 5 0 2 5 1 5 2 5 ]  A.

[ 1 + 0 4 + 4 ( 1 ) 0 + 0 0 1 0 0 0 1 ] =   [ 2 5 + 4 ( 1 5 ) 4 5 + 4 ( 1 5 ) 3 5 + 4 ( 0 ) 1 5 1 5 0 2 5 1 5 2 5 ] A. (R1      R1 + 4R2)

[ 1 0 0 0 1 0 0 0 1 ] = [ 2 5 0 3 5 1 5 1 5 0 2 5 1 5 2 5 ]  A.

∴A-1 = [ 2 5 0 3 5 1 5 1 5 0 2 5 1 5 2 5 ]

 

Q16.  [ 1 3 2 3 0 5 2 5 0 ]

A.16. Let A =  [ 1 3 2 3 0 5 2 5 0 ]

We write A = IA

[ 1 3 2 3 0 5 2 5 0 ] = [ 1 0 0 0 1 0 0 0 1 ]  A.

[ 1 3 2 3 + 3 ( 1 ) 0 + 3 ( 3 ) 5 + 3 ( 2 ) 2 2 ( 1 ) 5 2 ( 3 ) 0 2 ( 2 ) ] = [ 1 0 0 0 + 3 ( 1 ) 1 + 0 0 + 0 0 2 ( 1 ) 0 0 1 0 ]  A.  ( R 2 R 2 + 3 R 1 R 3 R 3 2 R 1 )

= [ 1 3 2 0 9 1 1 0 1 . 4 ] = [ 1 0 0 3 1 0 2 0 1 ]  A.

[ 1 3 2 0 1 4 p 0 9 1 1 ] = [ 1 0 0 2 0 1 3 1 0 ] A. (R2        R3)

[ 1 3 2 0 1 4 0 9 1 1 ] = [ 1 0 0 2 0 1 3 1 0 ] A. (R2   (-1) R2)

[ 1 3 2 0 1 4 0 0 9 9 ( 1 ) 1 1 9 ( 4 ) ] = [ 1 0 0 2 0 1 3 9 ( 2 ) 1 0 0 9 ( 1 ) ] A. (R3     R3--> 4R2)

[ 1 3 2 0 1 4 0 0 2 5 ] = [ 1 0 0 2 0 1 1 5 1 9 ]  A.

[ 1 3 2 0 1 4 0 0 1 ] = [ 1 0 0 2 0 1 3 5 1 2 5 9 5 ]  A.  ( R 3 1 2 5 R 3 )

[ 1 3 2 0 + 0 1 + 0 4 + 4 ( 1 ) 0 0 1 ] =   = [ 1 0 2 + 4 ( 3 5 ) 0 + 4 ( 1 2 5 ) 1 + 4 × ( 9 2 5 ) 3 2 5 1 2 5 9 2 5 ] A. (R2     R2 + 4R3)

[ 1 3 2 0 1 0 0 0 1 ] = [ 1 0 0 2 5 4 2 5 1 1 2 5 3 5 1 2 5 9 2 5 ]  A.

[ 1 + 0 3 + 0 2 + 2 ( 1 ) 0 1 0 0 0 1 ] = [ 1 + 2 ( 3 5 ) 0 + 2 ( 1 2 5 ) 0 + 2 ( 9 2 3 ) 2 5 4 2 5 1 1 2 5 3 5 1 2 5 9 2 5 ] A. (R1  R1 + 2R3)

[ 1 3 0 0 1 0 0 0 1 ] = [ 1 5 2 2 5 1 8 2 5 2 5 4 2 5 1 1 2 5 3 5 1 2 5 9 2 5 ]  A.

[ 1 + 0 3 3 ( 1 ) 0 + 0 0 1 0 0 0 1 ] =   [ 1 5 3 ( 2 5 ) 2 2 5 3 ( 4 2 5 ) 1 8 2 5 3 ( 1 1 2 5 ) 2 5 4 5 1 1 2 5 3 5 2 5 9 2 5 ] A. (R1   R1 3R2)

[ 1 0 0 0 1 0 0 0 1 ] = [ 1 1 0 2 5 1 5 2 5 2 5 4 2 5 1 2 5 3 5 1 2 5 9 2 5 ]  A.

[ 1 0 0 0 1 0 0 0 1 ] = [ 1 2 5 3 5 2 5 4 2 5 1 1 2 5 3 5 1 2 5 9 2 5 ]  A.

∴A-1 = [ 1 2 5 3 5 2 5 4 2 5 1 1 2 5 3 5 1 2 5 9 2 5 ]

 

Q17.  [ 2 0 1 5 1 0 0 1 3 ]

A.17. Let A =  [ 2 0 1 5 1 0 0 1 3 ]

 

[ 1 1 2 2 0 1 0 1 3 ] = [ 2 1 0 1 0 0 0 0 1 ]  A.

[ 1 1 2 2 2 ( 1 ) 0 2 ( 1 ) 1 2 ( 2 ) 0 1 3 ] = [ 2 1 0 1 2 ( 2 ) 0 2 ( 1 ) 0 2 ( 0 ) 0 0 1 ] A. (R2      R2  ----> 2R1)

[ 1 1 2 0 2 5 0 1 3 ] = [ 2 1 0 5 2 0 0 0 1 ]  A.

[ 1 1 2 0 1 3 0 2 5 ] = [ 2 1 0 0 0 1 5 2 0 ] A. (R2  <-->R3)

[ 1 1 2 0 1 3 0 + 2 ( 0 ) 2 + 2 ( 1 ) 5 + 2 ( 3 ) ] = [ 2 1 0 0 0 1 5 + 2 ( 0 ) 2 + 2 ( 0 ) 0 + 2 ( 1 ) ] A. (R3 ->R3 + 2R2)

[ 1 1 2 0 1 3 0 0 1 ] = [ 2 1 0 0 0 1 5 2 2 ]  A.

[ 1 2 ( 0 ) 1 2 ( 0 ) 2 2 ( 1 ) 0 3 ( 0 ) 1 3 ( 0 ) 3 3 ( 1 ) 0 0 1 ] = [ 2 2 ( 5 ) 1 2 ( 2 ) 0 2 ( 2 ) 0 3 ( 5 ) 0 3 ( 2 ) 1 3 ( 2 ) 5 2 2 ]  A.  ( R 1 R 1 2 R 3 R 2 R 2 3 R 3 )

[ 1 1 0 0 1 0 0 0 1 ] = [ 1 2 5 4 1 5 6 5 5 2 2 ]  A.

[ 1 0 1 1 0 0 0 1 0 0 0 1 ] = [ 1 2 ( + 1 5 ) 5 6 4 ( 5 ) 1 5 6 5 5 2 2 ] A. (R1 --->R1 - R2).

[ 1 0 0 0 1 0 0 0 1 ] = [ 3 1 1 1 5 6 5 5 2 2 ]  A.

∴ A1 =  [ 3 1 1 1 5 6 5 5 2 2 ]

 

Q18.Matrices A and B will be inverse of each other only if

(A) AB = BA (B) AB = BA = 0

(C) AB = 0, BA = I (D) AB = BA = I

A.18. Matrices A and B will be inverse of each other if.

(E) AB = BA = I.

Here option D is correct.

Maths Ncert Solutions class 12th Logo

Class 12 Math Chapter 3 Matrices Miscellaneous Exercise Solutions

The Class 12 Matrices Chapter 3 Miscellaneous exercise discusses all the previous topics mentioned in the Chapter 3 Matrices. This exercise provides a summarised view of all learned concepts in the form of an exercise. Miscellaneous exercise solutions include 15 Questions (7 Long, 5 Short, 3 MCQs).  Students can check out complete solution of the Miscellaneous exercise below;

Matrices Miscellaneous Exercise Solutions

Q1. Let A =  0 1 0 0  , show that (aI + bA)n = anI + nan – 1 bA, where I is the identity matrix of order 2 and n N.

A.1. We shall prove the result by using principal of mathematical induction

we have,

P (n) :- If A =  [ 0 1 0 0 ] , then (a I + b A)n = an I + nan - 1b A where I is identity matrix of order 2, n∈N

P (1): (a I + b A)1 = a1I + 1 ´a1 - 1b A

= a I + a0bA

= a1I + b A {Qx0 = 1}

So the result is true for n = 1.

Let the result be true for n = k. So,

P (k): (a I + b A)u = auI + u. au-1b A. _____ (1)

Now, we prove that the result holds for n = k + 1,

P (k + 1): (a I + b A)k + 1 = (a I + b A). (a I + b A)k

= (a I + b A) (auI + k au 1b A){using eqn (1)}

= a.akI2 + k. a au - 1b IA + akb.AI + a zzk 1b2k A2

= ak + 1I2 + k au - 1+1b IA + ak b AI + ak - 1b2 k A2 _____ (2)

Now, I2 =  [ 1 0 0 1 ] [ 1 0 0 1 ]  =  [ 1 0 0 1 ]  = I

IA =  [ 1 0 0 1 ] [ 0 1 0 0 ] = [ 0 1 0 0 ]  = A

AI =  [ 0 1 0 0 ] [ 1 0 0 1 ] = [ 0 1 0 0 ]  = A.

A2 = A.A = [ 0 1 0 0 ] [ 0 1 0 0 ] = [ 0 0 0 0 ]  = 0.

Putting these values in eqn (2). We get,

P (k + 1) = ak + 1 I + kab A + ak + 1 - 1b A + 0.

= ak + 1 I + (k + 1) a(k + 1)-1b A.

The result is true for n = k + 1. Thus by principle of mathematical induction

(a I + b A)n = an I + nan -1bA for A = [ 0 1 0 0 ]

holds true for all natural number n.

 

Q2. If A =  1 1 1 1 1 1 1 1 1  , prove that An 3 n - 1 3 n - 1 3 n - 1 3 n - 1 3 n - 1 3 n - 1 3 n - 1 3 n - 1 3 n - 1  , n ∈ N.

A.2. We have,

(E) P (n) : If A =  [
1 1 1 1 1 1 1 1 1
 ]. then An [ 3 n 1 3 n 1 3 n 1 3 n 1 3 n 1 3 n 1 3 n 1 3 n 1 3 n 1 ]  n є N.

P (1) : A1= [ 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 ]  =  [ 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 ] = [
1 1 1 1 1 1 1 1 1
 ]

So, the result holds true for n = 1.

Let the result be for n = k. So,

P (k): Au= [ 3 k 1 3 k 1 3 k 1 3 k 1 3 k 1 3 k 1 3 k 1 3 k 1 3 k 1 ]

Then P (k+1): Ak + 1 = Ak. A = [ 3 k 1 3 k 1 3 k 1 3 k 1 3 k 1 3 k 1 3 k 1 3 k 1 3 k 1 ]   [
1 1 1 1 1 1 1 1 1
 ]

[ 3 k 1 + 3 k 1 + 3 k 1 3 k 1 + 3 k 1 + 3 k 1 3 k 1 + 3 k 1 + 3 k 1 3 k 1 + 3 k 1 + 3 k 1 3 k 1 + 3 k 1 + 3 k 1 3 k 1 + 3 k 1 + 3 k 1 3 k 1 + 3 k 1 + 3 k 1 3 k 1 + 3 k 1 + 3 k 1 3 k 1 + 3 k 1 + 3 k 1 ]

= Ak + 1 = [ 3 ( k + 1 ) 1 3 ( k + 1 ) 1 3 ( k + 1 ) 1 3 ( k + 1 ) 1 3 ( k + 1 ) 1 3 ( k + 1 ) 1 3 ( k + 1 ) 1 3 ( k + 1 ) 1 3 ( k + 1 ) 1 ]

The result holds for n = k + 1. Hence,

An = [ 3 n 1 3 n 1 3 n 1 3 n 1 3 n 1 3 n 1 3 n 1 3 n 1 3 n 1 ]  holds for all natural number.

 

Q3. If A =  3 - 4 1 - 1  , then prove that An 1 + 2 n - 4 n n 1 - 2 n  , where n is any positive integer.

A.3. We have,

= [ 3 ( 1 + 2 k ) + ( 4 k ) × 1 4 ( 1 + 2 k ) + ( 4 k ) ( 1 ) 3 k + 1 × ( 1 2 k ) 4 × k + ( 1 2 k ) ( 1 ) ]

= [ 3 + 6 k 4 k 4 8 k + 4 k 3 k + 1 2 k 4 k + 2 k 1 ] = [ 3 + 2 k 4 4 k 1 + k 1 2 k ]

= [ 1 + 2 + 2 k 4 ( 1 + k ) 1 + k 1 2 2 x ]

= [ 1 + 2 ( 1 + k ) 4 ( 1 + k ) 1 + k 1 2 ( 1 + k ) ]

The results also holds for n = k + 1. Hence, An  = [ 1 + 2 n 4 n n 1 2 n ]

Holds for all natural number n.

 

Q4. If A and B are symmetric matrices, prove that AB – BA is a skew symmetric matrix.

A.4. Given, A and B are symmetric matrices.

(E) Then A’ = A and B’ = B.

Now, (AB - BA)’ = (AB)’ - (BA)’

= B’A’ - A’B’

= BA - AB

= -(AB - BA).

Hence, AB BA is skew-symmetric matrix

 

Q5. Show that the matrix B’AB is symmetric or skew symmetric according as A is symmetric or skew symmetric.

A.5. We have,

(E) (B’AB)’ = [B’(AB]’

= (AB)’(B’)’

= B’A’B.

When A is symmetric, A’ = A

(B’AB)’ = B’AB

ie, B’AB is symmetric.

And when A is skew-symmetric, A1 = -A

(B’AB)’ = -B’AB.

ie, B’AB is skew-symmetric.

 

Q6. Find the values of x, y, z if the matrix A =  0 2 y z x y - z x - y z  satisfy the equation A’A = I.

A.6. Given, A1 [ 2 2 y z x y z x y z ] Then, [ 0 x z 2 y y y z z z ]

Since,  =  we can write,

[ 2 2 y z x y z x y z ] [ 0 x z 2 y y y z z z ]

[ 0 x x 2 y y y z z z ] [ 0 2 y z x y z x y z ] = [ 1 0 0 0 1 0 0 0 1 ]

[ 0 + x 2 + x 2 0 + x y x y 0 x z + x z 0 + x y x y 4 y 2 + y 2 + y 2 2 y z y z y z 0 2 x + 2 x 2 y z y z y z z 2 + z 2 + z 2 ] = [ 1 0 0 0 1 0 0 0 1 ]

[ 2 x 2 0 0 0 6 y 2 0 0 0 3 z 2 ] = [ 1 0 0 0 1 0 0 0 1 ]

 

Q8. If A =[  3 1 - 1 2  ], show that A2 – 5A + 7I = 0.

A.8. Given A = [  3 1 - 1 2  ]

So;  A 2 = [ 3 1 1 2 ] [ 3 1 1 2 ] = [ 3 × 3 + 1 × ( 1 ) 3 × 1 + 1 × 2 1 × 3 + 2 × ( 1 ) 1 × 1 + 2 × 2 ]

= [ 9 1 3 + 2 3 2 1 + 4 ] = [ 8 5 5 3 ]

∴ A2 - 5A + 7I = [ 8 5 5 3 ] 5 [ 3 1 1 2 ] + 7 [ 1 0 0 1 ]

= [ 8 5 5 3 ] [ 1 5 5 5 1 0 ] + [ 7 0 0 7 ]

= [ 8 1 5 + 7 5 5 + 0 5 + 5 + 0 3 1 0 + 7 ] = [ 0 0 6 6 ] = 0 .

Hence Showed.

 

Q12. If A and B are square matrices of the same order such that AB = BA, then prove by induction that

ABn = BnA. Further, prove that (AB)n = AnBn for all n Î N.

A.12. We have, AB = BA. (given)

(E) P (n):AB’ = B’A.

P (i):AB1 = B1A. Þ AB = BA

so, the result is true for n = 1.

Let the result be true for n = k.

P (k):ABk = BkA

Then,

P (k + 1) : ABk + 1 = A. Bk. B = BkA.B = Bk.BA { } AB=BA

= Bk + 1.A .

So, ABk + 1 = Bk + 1A.

The result also holds for n = k + 1.

Hence, AB^n = B^n A^n holds for all natural number ‘n’.

Choose the correct answer in the following questions:

 

Q14.If the matrix A is both symmetric and skew symmetric, then

(A) A is a diagonal matrix (B) A is a zero matrix

(C) A is a square matrix (D) None of these

A14. Given, A is both symmetric and skew-symmetric.

(E) Then, A’ = A ____ (1) and A’ = -A ____ (2)

So using (2), A’ = -A.

A = -A {eqn (I)}

A + A = 0

2A = 0

A = 0.

A is a zero matrix

So, option B is correct.

 

Q15. If A is square such that A2 = A, then (I + A)3 – 7A is equal to

(A) A (B) I – A (C) I (D) 3A

A.15. Given, A2= A.

(E) we need to calculate,

(I + A)3- 7A = I3 + A3 + 3IA (I + A) - 7A {(x + y)3 = x3 + y3 + 3xy (a + y)}

 

Read more
Maths Ncert Solutions class 12th Logo

Class 12 Math important reference books and preparation Tips

Candidates can explore recommended books for preparing for competitive exam mathematics. Candidates must select the appropriate resources and devise an effective preparation strategy to succeed in both board and competitive exams like JEE Main and others. Below, candidates can find preparation tips along with book suggestions.

Important Reference Books for JEE Main Maths Preparation

  • RD Sharma Mathematics for Class 12 ( ( Vol.I and II)
  • Objective Mathematics by R.D. Sharma (For JEE Mains)
  • Cengage Mathematics Book Series by G. Tewani (For JEE Mains and Advance)
  • Problems in Calculus of One Variable by I.A. Maron 
  • Trigonometry and Co-ordinate Geometry by SL Loney

Several other books are available in the market for JEE Main preparation for Maths. Candidates should discuss the options with their teachers or mentors before buying the books.

Preparation Tips for Class 12 Math and JEE Main

  • Understand the Exam Structure: Begin by familiarizing yourself with the exam pattern, including the type and difficulty level of questions, time duration, question format (MCQs or descriptive), preparation time required, recommended resources, and other key details. A thorough understanding of the exam ensures effective and realistic planning.

     

  • Choose the Right Study Resources: Select preparation materials carefully with guidance from mentors or teachers. Ensure that the resources align with the difficulty level of the targeted exam. Using mismatched resources can slow progress and disrupt the preparation schedule.

     

  • Create a Comprehensive Preparation Plan: Develop a flexible and well-rounded study plan that includes ample time for practice and revision. Regularly revisiting previously learned concepts is essential for solidifying understanding.

     

  • Practice and Take Mock Tests: Consistent practice and attempting mock tests are vital for excelling in board and entrance exams. Aim to take as many mock tests as possible during your preparation. Mock tests help build confidence, improve time management, and enhance critical thinking skills. For targeted practice, try section-wise and chapter-wise mock tests throughout your preparation journey.

Read more
qna

Maths Ncert Solutions class 12th Exam

Student Forum

chatAnything you would want to ask experts?
Write here...

Answered 22 hours ago

Class 12 Math Relation and Function chapter have moderate weightage in the JEE Mains exam. Relation and function combined with sets comprises of 4-8 marks weight in the JEE Mains Exam. However, Students should know there is no fixed weightge of relation and fucntions chapter. Questions may be asked

...Read more

E

Esha Garg

Beginner-Level 2

Answered 22 hours ago

Candidates must be aware of the important concepts discussed in the chapter and their application in other mathematics chapters. Students can check several fundamental and advanced topics discussed in the Relation and Function chapter.

  • Basic Concepts: Definations, Sets cross product, Relation, Functi

...Read more

P

Pallavi Arora

Beginner-Level 2

Answered 23 hours ago

Yes, Class 12 Math Relation and Function chapter is important for rither CBSE Board Exams or State Boards. The Relation and Function chapter have weightage of 6-8 marks in the CBSE board exam. Moreover Relation and function chapter forms the foundation for many other advanced topicssuch as  types of

...Read more

A

Anushree Tiwari

Beginner-Level 2