Such encapsulation reduced the evaporation rate of droplets by up to 200 times, increasing the lifetime of these droplets, the team found.
Scientists at the Indian Institute of Science (IISc) have developed a novel technique to encapsulate liquid droplets used for various applications, including single-crystal growth and cell culture.
Droplets are important in a variety of fields. “In microreactors, droplets can be used to create different reaction environments or mix different chemicals. In drug delivery systems, droplets can be used to deliver drugs or other agents to specific tissues or organs. In crystallisation studies, droplets can be used to control the growth of crystals. And in cell culture platforms, droplets can be used to grow cells in a controlled environment, which can help to improve cell viability and proliferation,” explains lead researcher Rutvik Lathia, PhD student at the Centre for Nano Science and Engineering (CeNSE), IISc.
The technique exploits the capillary effect – the rise of a liquid through a narrow space – to coat droplets in a composite shell containing oil-loving and hydrophobic particles. It offers the ability to tune the shell thickness over a wide range, allowing the encapsulation of droplets of different sizes.
There are several challenges in using such droplets. They are vulnerable to contamination from the ambient environment, the ease and success of a particular process depends a lot on the surface they’re dropped on, and they can vanish into thin air pretty fast. While encapsulating droplets with liquids or solids that don’t mix with the droplets (like water droplets inside an oil shell) is a plausible solution to avoid these issues, making a shell that is hardy, continuous and has an adjustable thickness at a super tiny scale has proven elusive so far.
Prosenjit Sen, Associate Professor at Centre for Nano Science and Engineering (CeNSE), IISc, said, “Our method of encapsulating droplets introduces a multitude of new opportunities in the realm of droplet-related applications. The tunable nature of the shells, both solid and liquid, allows for precise control over various parameters, making it versatile for applications in chemistry, biology, and materials science.”
Read more:
Follow Shiksha.com for latest education news in detail on Exam Results, Dates, Admit Cards, & Schedules, Colleges & Universities news related to Admissions & Courses, Board exams, Scholarships, Careers, Education Events, New education policies & Regulations.
To get in touch with Shiksha news team, please write to us at news@shiksha.com
Pallavi is a versatile writer with around eight years of experience in digital content. She has written content for both Indian and International publications and has a solid background in journalism and communicati... Read Full Bio
Latest News
Next Story