NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions: Exercise PDFs, Weightage & Formulae

NCERT Maths 12th 2023 ( Maths Ncert Solutions class 12th )

nitesh singh
Updated on Jan 22, 2025 16:40 IST

By nitesh singh, Senior Executive

Class 12 Chapter 2 Inverse Trigonometric Function NCERT Solutions: Shiksha brings complete class 12 Math NCERT solutions for Chapter 2 Inverse Trigonometric Function to help students. Class 12 Math Chapter 2 Inverse Trigonometric Function is a vital chapter, its concepts are used in calculus, matrices and determinants, physics numerical, and many other important places. 

Shiksha provides detailed Inverse Trigonometric Function NCERT Solutions prepared by our experts. Class 12 Math Chapter 2 Inverse trigonometric function is very important for both board and entrance exam students since ITF concepts are used in various other chapters. Students can access the complete Exercise-wise NCERT Class 12 chapter 2 solution PDF on this page.

Students can use the Inverse Trigonometric Function Class 12 Math Solution PDF to strengthen their concepts for CBSE Boards as well as other Entrance exams such as JEE Main, MHT CET, etc. Students should also check the Class 11 Chapter 3 trigonometric function NCERT solutions to get a better understanding of inverse trigonometric functions. 

Inverse trigonometric functions are defined as the inverse of basic trigonometric functions; sine, cosine, tangent, cotangent, secant, and cosecant functions. Students can access the complete Class 11 Math chapter-wise Solutions and Class 12 Chapter-wise Math solutions on Shiksha. For more information check below;

Related Important Math Chapter Solutions
Class 11 Chapter 3 Trigonometric Functions Class 11 Chapter 2 Relation and Function Solutions Class 12 Chapter 8 Application of Integrals
Table of content
  • Class 12 Math Chapter 2 Inverse Trigonometric Function: Key Topics, Weightage & Important Formulae
  • Class 12 Math Chapter 2 Inverse Trigonometric Function Solution PDF: Free Download
  • Class 12 Math Chapter 2 Inverse Trigonometric Function Exercise-wise Solutions
  • Class 12 Math Chapter 2 Inverse Trigonometric Function Exercise 2.1 Solutions
  • Class 12 Math Chapter 2 Inverse Trigonometric Function Exercise 2.2 Solutions
  • Class 12 Math Chapter 2 Inverse Trigonometric Functions Miscellaneous Exercise Solutions
  • Class 12 Math important reference books and preparation Tips
View More
Maths Ncert Solutions class 12th Logo

Class 12 Math Chapter 2 Inverse Trigonometric Function: Key Topics, Weightage & Important Formulae

Chapter 2 Inverse Trigonometric function carries 5-6 marks in CBSE Board Exams, often short-answer or value-based questions are asked from this chapter. Inverse Trigonometric Functions have a moderate weightage in competitive exams; however, its concepts are frequently used in integral calculus problems. 

This chapter includes inverses of trigonometric functions like sine, cosine, and tangent. Check the key topics of this chapter below; 

  • Inverse trigonometric functions: sin⁻¹(x), cos⁻¹(x), tan⁻¹(x), cosec⁻¹(x), sec⁻¹(x), cot⁻¹(x)
  • Properties: Principle value, real value, domain, range, and co-domain of inverse trigonometric functions

Check out Dropped Topics of Inverse Trigonometric Function: 2.3 Properties of Inverse Trigonometric Functions (Except sin (sin-1 x) = x, x ∈ [-1, 1] sin-1 (sin x) = x, x ∈ [-π/2, π/2], Page 45 – 47 Examples 4, 7 and 8; Alternative Solution of Example 5, Page 47-48 Ques. 3, 4, 6, 12, 14, 15, Page 49-51 Examples 10, 11, 12, 13, Page 51-52 Ques. 8, 12, 17 (Miscellaneous Exercise), Page 53 Summary Points 8–13

Read more:  Most scoring topics in Mathematics for JEE Main

Inverse Trigonometric Function Important Formulae for CBSE and Competitive Exams

Basic Properties

  • sin 1 ( x ) = sin 1 ( x ) , x [ 1 , 1 ] \sin^{-1}(-x) = -\sin^{-1}(x), \quad x \in [-1, 1]
  • cos 1 ( x ) = π cos 1 ( x ) , x [ 1 , 1 ] \cos^{-1}(-x) = \pi - \cos^{-1}(x), \quad x \in [-1, 1]
  • tan 1 ( x ) = tan 1 ( x ) , x R \tan^{-1}(-x) = -\tan^{-1}(x), \quad x \in \mathbb{R}
  • cot 1 ( x ) = π cot 1 ( x ) , x R \cot^{-1}(-x) = \pi - \cot^{-1}(x), \quad x \in \mathbb{R}
  • sec 1 ( x ) = π sec 1 ( x ) , x 1 \sec^{-1}(-x) = \pi - \sec^{-1}(x), \quad |x| \geq 1
  • csc 1 ( x ) = csc 1 ( x ) , x 1 \csc^{-1}(-x) = -\csc^{-1}(x), \quad |x| \geq 1

Domain and Range of ITF

Function Domain Range
sin 1 x \sin^{-1}x
[ π 2 , π 2 ] \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right]
cos 1 x \cos^{-1}x
tan 1 x \tan^{-1}x
( π 2 , π 2 ) \left( -\frac{\pi}{2}, \frac{\pi}{2} \right)
cot 1 x \cot^{-1}x
( 0 , π )
sec 1 x \sec^{-1}x
[ 0 , π ] { π 2 }
cosec 1 x \csc^{-1}x
( , 1 ] [ 1 , ) (-\infty, -1] \cup [1, \infty)
[ π 2 , π 2 ] { 0 } \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right] \setminus \{0\}

Sum and Difference Formulas

  • sin 1 x + cos 1 x = π 2 , x [ 1 , 1 ] \sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}, \quad x \in [-1, 1]
  • tan 1 x + cot 1 x = π 2 , x R \tan^{-1}x + \cot^{-1}x = \frac{\pi}{2}, \quad x \in \mathbb{R}
  • sec 1 x + csc 1 x = π , x 1 \sec^{-1}x + \csc^{-1}x = \pi, \quad |x| \geq 1
Maths Ncert Solutions class 12th Logo

Class 12 Math Chapter 2 Inverse Trigonometric Function Solution PDF: Free Download

We have compiled solutions for all exercises of Inverse Trigonometric Functions in one place for ease of students. Students can download the Class 12 Math Chapter 2 ITF solution PDF for free. The NCERT Solutions for Class 12 Maths Inverse Trigonometric Functions PDF is a very helpful document for all student boards as well as JEE Main, and other entrance exams. access the PDF below for free;

Class 12 Math Chapter 2 Inverse Trigonometric Function Solution: Free PDF Download

Maths Ncert Solutions class 12th Logo

Class 12 Math Chapter 2 Inverse Trigonometric Function Exercise-wise Solutions

Inverse Trigonometric Function is an essential topic for building foundational trigonometric concepts. Chapter 2 Class 12 Math Inverse Trigonometric Function deals with the properties, domains, and ranges of inverse trigonometric functions. The ITF concepts also play a vital role in calculus, Matrices, Determinants, and other important physics and Math concepts and real-world applications. Students can check the exercise-wise Chapter 2 ITF math solutions below;

Maths Ncert Solutions class 12th Logo

Class 12 Math Chapter 2 Inverse Trigonometric Function Exercise 2.1 Solutions

Chapter 2 Inverse Trigonometric Function Exercise 2.1 focuses on problems finding principal values, range, domain, and co-domain. Chapter 2 ITF Exercise 2.1 includes 14 Questions (12 Short Answers, 2 MCQs) primarily based on finding the values of inverse trigonometric functions. Students can check the complete the exercise 2.1 solutions below;

Inverse Trigonometric Function Exercise 2.1 Solutions

Find the principal values of the following:

Q1.  s i n 1 ( 1 2 )

A.1. Let sin−1   ( 1 2 )  =y. Then, sin y=-  1 2

We know that the range of principal value branch of sin−1 is π 2 π 2

and sin−1 ( 1 2 ) =−sin−1 1 2 (sin (-x) = -sin x)

( π 6 )  = sin y (as sin
π 6

1 2  )

Principal value of sin−1 ( 1 2 )  is  ( π 6 )

 

Q5.  c o s 1 ( 1 2 )

A.5. Let cos -1 ( 1 2 )  =y Then cos y =  1 2  = − cos
π
3
 cos  ( π x 3 )

= cos  3 π π 3

= cos  2 π 3

 (E) We know that the range of principal value

branch of cos−1 is [0, π ] and cos 2 x 3  =  1 2

Principal value of cos−1  ( 1 2 )  is  2 x 3  .

 

 

Find the values of the following:

Q11.  t a n 1 ( 1 ) + c o s 1 1 2 + s i n 1 1 2

A.11. tan−1(1) + cos−1 ( 1 2 ) +  sin −1 ( 1 2 )

 

Q12.  c o s 1 1 2 + 2 s i n 1 1 2

A.12. cos−1 1 2 + 2Sin−1 1 2 = cos−1 ( c o s π 3 ) + 2×Sin−1 ( s i n π 6 )

π 3 + 2 × π 6

π 3 + π 3

2 π 3

 

Q13.  I f s i n 1 x = y , t h e n

( A ) 0 y π ( B ) π 2 y π 2 ( C ) 0 < y < π ( D ) π 2 < y < π 2

A.13. Given, Sin−1x=y.

(E) We know that the principal value branch of Sin−1 is

[ π 2 , π 2 ]  Hence ,  π 2  ≤ y ≤  π 2

Option B is correct.

 

Q14.  t a n 1 √3 s e c 1 ( 2 ) i s e q u a l t o

( A ) π ( B ) π 3 ( C ) π 3 ( D ) 2 π 3

A.14.

=tan−1 ( t a n π 3 )  −  π + sec−1 ( s e c π 3 )

π 3 π + π 3

π 3 π + π 3

π 3 .

Option B is correct.

Maths Ncert Solutions class 12th Logo

Class 12 Math Chapter 2 Inverse Trigonometric Function Exercise 2.2 Solutions

Chapter 2 Inverse Trigonometric Function Exercise 2.2 consists of 21 Questions (18 Short Answers, 3 MCQs). Chapter 2 ITF contains questions related to solving ITF equations and finding the values of complex inverse trigonometric functions. Students can check the complete exercise 2.2 solutions below;

Relation and Function Exercise 2.2 Solutions

Q1.  t a n 1 ( x y ) t a n 1 x y x = y i s e q u a l t o

( A ) π 2 ( B ) π 3 ( C ) π 4 ( D ) 3 π 4

A.1. We know that.

sin 3θ =3 sin θ 4sin3θ (identity).

(E) Let x = sinθ. Then, sin −1x=θ . We have,

Sin3(sin −1x) = 3x−4x3

3sin −1x =sin-1 (3x−4x3)

Hence proved.

 

Q2.  3 c o s 1 x = c o s 1 ( 4 x 3 3 x ) , x [ 1 2 , 1 ]

A.2. We know that,

cos3θ= 4cos3θ - 3cosθ

Letx = cosθ Then θ = cos-1x. We have,

Cos3(cos-1x) = 4x3-3x

3cos-1x = cos-1(4x3- 3x)

Hence Proved

 

Q3.  t a n 1 2 1 1 + t a n 1 7 2 4 = t a n 1 1 2

A.3. L.H.S = tan -1 2 1 1 + tan -1 7 2 4

Using tan -1x+ tan -1y= tan -1 x + y 1 x y  , xy<1

L.H.S =tan -1 2 1 1 + 7 2 4 1 2 1 1 × 7 2 4 = tan -1 2 × 2 4 + 7 × 2 1 1 × 2 4 1 1 × 2 4 7 × 2 1 1 × 2 4

tan -1 4 8 + 1 4 2 6 4 1 4 = tan -1 1 2 5 2 5 0 = tan -1 1 2  = R.H.S

 

Q4.  2 t a n 1 1 2 + t a n 1 1 7 = t a n 1 3 1 1 7

A.4. L.H.S= 2 tan -1 1 2 + tan -1 1 7

(E) Using2 tan -1x= tan -1 2 a 1 x 2  we can write.

L.H.S = tan -1 2 × 1 2 1 ( 1 2 ) 2 + tan -1 1 7

= tan -1 1 1 1 4 + tan -1 1 7

= tan -1 1 4 1 4 + tan -1 1 7 = tan -1 4 3 + tan -1 1 7

= tan -1 4 3 + 1 7 1 4 3 × 1 7 { Ø tan -1 x + tan -1 y = tan - 1 x + y 1 x y  }

= tan -1 7 × 4 + 1 × 3 3 × 7 3 × 7 4 × 1 3 × 7

= tan -1  2 8 + 3 2 1 4 = tan -1 3 1 1 7  = R H S

Write the following functions in the simplest form:

 

= tan -1 s e c θ t a n θ

tan -1 1 c o s θ   1 s i n θ c o s θ = tan -1 1 c o s θ s i n θ s i n θ c o s θ   = t a n + 1 c o s θ s i n θ = t a n 1 2 s i n 2 θ 2 2 s i n θ 2 c o s θ 2

= l a n 1 s i n θ 2 c o s θ 2 { Ø cos 2Ø = 1 - sin2ØÞ 2 sin2 Ø = 1 - cos 2Ø => 2 sin2 θ 2  = 1 cos2  θ 2 = 1- cosØ }

= t a n 1 ( t a n θ 2 )  Similar

= θ 2  sin 2Ø = 2sinØ cosØ => sin θ 2  = 2 sin  θ 2  cos  θ 2 => sin = 2 sin θ 2  cos  θ 2

= t a n 1 x 2

 

 

Q8.  t a n 1 ( c o s x s i n x c o s x + s i n x ) , 0 π 4 < x < 3 π 4

A.8. Given tan -1 c o s x s i n x c o s x + s i n x  ,  π 4 ,  x<  3 x 4

(M) Dividing numerator & denominator cos x we get,

tan -1 c o s x s i n x c o s x c o s x + s i n x c o s x = t a n 1 c o s x c o s x s i n x c o s x c o s x c o s x + s i n x c o s x = t a n 1 1 t a n x 1 + t a n x .

We know that  t a n π 4 = 1  = 1 so,

= t a n 1 t a n π 4 t a n x 1 + t a n π 4 t a n x = t a n 1 [ t a n ( π 4 x ) ]   { t a n ( x y ) = t a n x t a n y 1 + t a n x · t a n y }

= π 4 x  .

 

 

Find the values of each of the following:

Q11.  t a n 1 [ 2 c o s ( 2 s i n 1 1 2 ) ]

A.11.  t a n 1 [ 2 c o s ( 2 s i n 1 1 2 ) ] = t a n 1 [ 2 c o s ( 2 s i n 1 s i n π 6 ) ]

(E)  = t a n 1 [ 2 c o s ( 2 × π 6 ) ]

= t a n 1 [ 2 c o s π 3 ]

= t a n 1 2 × 1 2

= t a n 1 1

= t a n 1 ( t a n π 4 )

= π 4

 

Q12.  c o t ( t a n 1 a + c o t 1 a )

A.12. cot ( t a n 1 a + c o t 1 a ) = c o t π 2 { t a n 1 x + c o t 1 x = π 2 }

(E)  = 0

 

Q13.  t a n 1 2 [ s i n 1 2 x 1 + x 2 + c o s 1 1 y 2 1 + y 2 ] , | x | < 1 , y > 0 a n d x y < 1

A.13.  t a n 1 2 [ s i n 1 2 x 1 + x 2 + c o s 1 1 y 2 1 + y 2 ] , | x | < 1 , y >

(M) Let x = tanØ . then tan-1x= 0 and y = tan ω then tan-1y = ω. we have,

tan  1 2   {sin −1 2 t a n θ 1 + t a n 2 θ + 1 t a n 2 ω 1 + t a n 2 ω }

= t a n 1 2 { s i n 1 ( s i n 2 θ ) + c o s 1 ( c o s 2 ω ) }   { s i n 2 θ 2 t a n θ 1 + t a n 2 θ c o s 2 θ = 1 t a n 2 θ 1 + t a n 2 θ t a n x + y = t a n x + t a n y 1 t a n x t a n y }

= t a n 1 2 { 2 θ + 2 ω } = t a n ( θ + ω )

= t a n θ + t a n ω 1 t a n θ t a n ω

x = y 1 x y

 

Q14.  I f s i n ( s i n 1 1 5 + c o s 1 x ) = 1 , t h e n f i n d t h e v a l u e o f x

A.14.  s i n ( s i n 1 1 5 + c o s 1 x ) = 1 .

(E)  s i n ( s i n 1 1 5 + c o s 1 x ) = s i n π 2 { s i n π 2 = 1 }

s i n 1 1 5 + c o s 1 x = s i n 1 ( s i n π 2 ) = π 2

c o s 1 x = π 2 s i n 1 1 5

c o s 1 x = c o s 1 1 5   { π 2 = s i n 1 x + c o s 1 x }

= π 2 s i n 1 1 5 = c o s 1 1 5   { π 2 s i n 1 x = c o s 1 x x = 1 5 π 2 s i n 1 1 5 = c o s 1 1 5 .

= x =  1 5 .

 

Q15.  I f t a n 1 x 1 x 2 + t a n 1 x + 1 x + 2 = π 4 , t h e n f i n d t h e v a l u e o f x

A.15.  t a n 1 x 1 x 2 + t a n 1 x + 1 x + 2 = π 4

(E)Using  t a n 1 x + t a n 1 y = t a n 1 x + y 1 x y .

t a n 1 ( x 1 ) ( x 2 ) + ( x + 1 x + 2 ) 1 ( x 1 ) ( x 2 ) × ( x + 1 x + 2 ) = π 4 .

( x 1 ) ( x + 2 ) 1 ( x + 1 ) ( x 2 ) ( x 2 ) ( x + 2 ) ( x 2 ) ( x + 2 ) ( x 1 ) ( x + 1 ) ( x 2 ) ( x + 2 ) = t a n π 4

( x 1 ) ( x + 2 ) + ( x + 1 ) ( x 2 ) ( x 2 ) ( x + 2 ) ( x 1 ) ( x + 1 ) = 1 .

x 2 + 2 x x 2 + x 2 2 x + x 2 ( x 2 4 ) ( x 2 1 2 ) = 1 .   { ( a b ) ( a + b ) = a 2 b 2 }

2 x 2 4 x 2 4 x 2 + 1 = 1 2 x 2 4 3 = 1 2 x 2 4 = 3

 

Find the values of each of the expressions in Exercises 16 to 18.

 

Q16.  s i n 1 ( s i n 2 π 3 )

A.16.  s i n 1 ( s i n 2 π 3 ) .

(M) As  2 π 3 [ π 2 , π 2 ] ;  principal value branch of sin-1 we can write,

s i n 1 ( s i n 3 π π 3 ) = s i n 1 ( s i n 3 π 3 π 3 ) = s i n 1 ( s i n π π 3 )

= s i n 1 ( s i n π 3 ) { s i nis ( + )ve in ind quadrat
}

= π 3 .

 

Q17.  t a n 1 ( t a n 3 π 4 )

A.17.  t a n 1 ( t a n 3 π 4 ) .

(M). As  3 π 4 ( π 2 , π 2 ) ; principal value branch of tan -1we can write,

t a n 1 ( t a n 3 π 4 ) = t a n 1 t a n 4 π π 4   = t a n 1 ( t a n 4 π 4 π 4 )

= t a n 1 ( t a n π π 4 )

= t a n 1 ( t a n π 4 ) { t a n is( )wein I 1  quadent }

= t a n 1 ( t a n 1 4 ) { t a n 1 ( x ) = t a n 1 x }

π 4

 

Q18.  t a n ( s i n 1 3 5 + c o t 1 3 2 )

A.18.  t a n ( s i n 1 3 5 + c o t 1 3 2 )

(M) Let  s i n 1 3 5 = x and cot-1 3 2 ,  = y .

Then  s i n x = 3 5 c o t y = 3 2

Hence, tan x =  s i n x c o s x  =  3 5 4 5  =  3 4

t a n ( s i n 1 3 5 + c o t 1 3 2 ) = t a n ( x + y )

= t a n x + t a n y 1 t a n x t a n y  .

3 × 3 + 2 × 4 4 × 3 4 × 3 3 × 2 4 × 3

4 × 3 3 × 2 4 × 3

9 + 8 1 2 6 = 1 7 6

 

Q19.  c o s 1 ( c o s 7 π 6 ) i s e q u a l t o ( A ) 7 π 6 ( B ) 5 π 6 ( C ) π 3 ( D ) π 6

A.19. Cos-1 cos 7 π 6

(M) As  7 π 6  [0, π ] ;principal value branch of cos-1

cos-1 ( c o s 7 π 6 ) = cos-1 ( c o s 2 x 7 π 6 )   { c o s ( 2 π θ ) = c o s θ }

= cos-1 ( s i s 1 2 π 7 π 6 )

= c o s 1 c o s 5 π 6 5 π 6 [ 0 , π ]

5 π 6

So, option B is correct

 

Q20.  s i n 1 ( π 3 s i n 1 ( 1 2 ) ) i s e q u a l t o ( A ) 1 2 ( B ) 1 3 ( C ) 1 4 ( D ) 1

= sin  [ π 3 + s i n 1 ( s i n π 6 ) ]

= sin  [ π 3 + π 6 ]  = sin  [ 2 π + π 6 ]  = sin  ( 3 π 6 )

= sin  π 2 = 1  .

 

Maths Ncert Solutions class 12th Logo

Class 12 Math Chapter 2 Inverse Trigonometric Functions Miscellaneous Exercise Solutions

The Miscellaneous Exercise of Inverse Trigonometric Function Chapter 2 Class 12 Maths contains 17 Questions (14 Short Answers, 3 MCQs). Students are provided with complete Miscellaneous Exercise solutions with detailed explanations including all the important concepts and more. The Chapter 2 ITF Miscellaneous Exercise consists of summarised examples of all the previous exercises. Students can complete Chapter 2 miscellaneous exercise well;

Inverse Trigonometric Function Miscellaneous Exercise Solutions

Find the value of the following:

Q1.  c o s 1 ( c o s 1 3 π 6 )

A.1. Cos-1 ( c o s 1 3 π 6 . )  =  c o s 1   ( c o s 1 2 π + π 6 )

c o s 1   ( c o s 1 2 π 6 + π 6 )

c o s 1   [ c o s 1 ( 2 π + π 6 ) ]  {Øcor2 π +=ØcosØ}

= c o s 1 ( c o s π 6 )

= π 6 ∈ [0,x]

 

Q2.  t a n 1 ( t a n 7 π 6 )

A.2.  t a n 1 ( t a n 7 π 6 ) = t a n 1 ( t a n 6 π + π 6 )

= t a n 1 ( t a n 6 π 6 + π 6 )

= t a n 1 ( t a n π + π 6 )

= t a n 1 ( t a n π 6 ) { Ø tan ( π + Ø ) = tan Ø as tan b (+) we in 3rd quadrant)}

= π 6 ( π 2 , π 2 )

 

 

Q4.  2 s i n 1 8 1 7 + s i n 1 3 5 = t a n 1 7 7 3 6

A.4. Let  s i n 1 8 1 7 = x s i n 1 3 5 = y .

(N. then,  s i n x = 8 1 7 s i n y = 3 5 .

So,  t a n x = s i n x c o s x  and  t a n y = s i n y c o s y

= 8 / 1 7 1 5 / 1 7 = 3 / 4 4 / 5

= 8 1 5 = 3 4

Using.   tan ( x + y ) = t a n x + t a n y 1 t a n x t a n y

t a n ( s i n 1 8 1 7 + s i n 1 3 5 ) = 8 1 5 + 3 4 1 8 1 5 × 3 4

tan  ( s i n 1 8 1 7 + s i n 1 3 5 = 8 × 4 + 3 × 1 5 1 5 × 4 1 5 × 4 8 × 3 1 5 × 4 = 3 2 + 4 5 6 0 2 4 s i n

sin-1 8 1 7 + s i n 1 3 5 = tan-1 7 7 3 6

Hence proved.

 

Q5.  c o s 1 4 5 + c o s 1 1 2 1 3 = c o s 1 3 3 6 5

A.5.  c o s 1 4 5 + c o s 1 1 2 1 3 = c o s 1 3 3 6 5 ° .

Let cos-1 4 5 and cos-1 1 2 1 3  = y.

Then,  c o s x = 4 5  and  cos y = 1 2 1 3 .

Using  c o s ( x + y ) = c o s x c o s y s i n x s i n y .

c o s [ c o s 1 4 5 + c o s 1 1 2 1 3 ] = 4 5 1 2 1 3 3 5 × 5 1 3

c o s [ c o s 1 4 5 + c o t 1 1 2 1 3 ] = 4 8 1 5 6 5 = 3 3 6 5

c o s 1 4 5 + c o s 1 1 2 1 3 = c o s 1 3 3 6 5 . ϕ

 

Q6.  c o s 1 1 2 1 3 + s i n 1 3 5 = s i n 1 5 6 6 5

A.6.  c o s 1 1 2 1 3 + s i n 1 3 5 = s i n 1 5 6 6 5

Let  c o s 1 1 2 1 3 = xandsin 1 3 5 = y .

Thin,  c o s x = 1 2 1 3  and sin y = 3 5

Using  s i n ( x + y ) = s i n x c o s y + c o s x s i n y .

s i n [ c o s 1 1 2 1 3 + s i n 1 3 5 ] = 5 1 3 × 4 5 + 1 2 1 3 × 3 5 = 2 0 + 3 6 6 5 = 5 6 6 5 .

c o s 1 1 2 1 3 + s i n 1 3 5 = s i n 1 5 6 6 5 .

 

Q7.  t a n 1 6 3 1 6 = s i n 1 5 1 3 + c o s 1 3 5

A.7. Let  s i n 1 5 1 3 = x  and c o s 1 3 5 = y .

Then,  s i n x = 5 1 3 a n d c o s = 3 5

So,  t a n x = s i n x c o s x a n d t a n y = s i n y c o s y

= 5 / 3 1 2 / 1 = 4 / 5 3 / 5 .

= 5 1 2 = 4 3 .

Using  t a n ( x + y ) = l a n x + l a n y 1 t a n x t a n y .

tan  ( s i n 1 5 1 3 + c o s 1 3 5 ) = 5 1 2 + 4 3 1 5 1 2 × 4 3 =   5 × 3 + 4 × 1 2 1 2 × 3 1 2 × 3 5 × 4 1 2 × 3

= 1 5 + 4 8 3 6 2 0 = 6 3 1 6

s i n 1 5 1 3 + c o s 1 3 5 = t a n 1 6 3 1 6 .

Hence proved.

 

Q8.  t a n 1 1 5 + t a n 1 1 7 + t a n 1 1 3 + t a n 1 1 8 = π 4

A.8. LH.S  = ( t a n 1 1 5 + t a n 1 1 7 ) + ( t a n 1 1 3 + t a n 1 1 8 )

= t a n 1 [ 1 5 + 1 7 1 1 5 · 1 7 ] + t a n 1 [ 1 3 + 1 8 1 1 3 , 1 8 ] { u s i n g t a n 1 x + t a n 1 y x + y 1 x y , x y < 1 }

t a n 1 [ 7 + 5 7 × 5 7 × 5 1 7 × 5 ] + t a n 1 [ 8 + 3 5 × 3 8 × 3 1 8 × 3 ]

= t a n 1 ( 1 2 3 5 1 ) + t a n 1 ( 1 1 2 4 1 ) = t a n 1 1 2 3 4 + t a n 1 1 1 2 3

= t a n 1 6 1 7 + t a n 1 1 1 2 3

= t a n 1 ( 6 1 7 + 1 2 3 1 6 1 7 × 3 2 3 ) = t a n 1 ( 6 × 2 3 + 1 1 × 1 1 1 7 × 2 3 7 × 2 3 6 × 1 1 1 7 × 2 3 )

= t a n 1 1 3 8 + 1 8 7 3 9 1 6 6 = t a n 1 3 2 5 3 2 5 = t a n 1 1

= t a n 1 ( t a n 1 4 )

= x 4 =R.H.S

 

 

Solve the following equations:

Q13.  2 t a n 1 ( c o s x ) = t a n 1 ( 2 c o s e c x )

A.13. Given,

( M ) 2 t a n 1 ( c o s x ) = t a n 1 ( 2 c o s e c x )

t a n 1 2 c o s x 1 c o s 2 x = t a n 1 2 s i n x   { u s i n g . t a n 1 2 x = 2 x 1 x 2 }

2 c o s x s i n 2 x = 2 s i n x   { 1 c o s 2 x = s i n 2 x 1 = s i n 2 x + c o s 2 x }

c o s x s i n x = 1

c o t x = c o t x 4

x = π 4 .

 

Q14.  t a n 1 1 x 1 + x = 1 2 t a n 1 x , ( x > 0 )

A.14. Given, (M)

t a n 1 ( 1 x 1 + x ) = 1 2 t a n 1 x

x = t a n θ.Then θ = t a n 1 x Bo we have,

t a n 1 ( 1 t a n θ 1 + t a n θ ) = 1 2 t a n 1 ( t a n θ )

t a n 1 ( t a n π 4 t a n θ 1 + t a n x 4 t a n θ ) = 1 2 θ { t a n π 4 = 1 } .

t a n 1 { t a n ( x 4 θ ) } = θ 2 { t a n x t a n y 1 + t a n x t a n = t a n ( x y )

π 4 θ = θ 2

θ 2 + θ = x 4

3 θ 2 = π 4

θ = π 4 × 2 3 = π 6

 

Q16.  s i n 1 ( 1 x ) 2 s i n 1 x = π 2 , t h e n x i s e q u a l t o ( A ) 0 , 1 2 ( B ) 1 , 1 2 ( C ) 0 ( D ) 1 2

A.16.  s i n 1 ( 1 x ) 2 s i n 1 x = π 2 ( 1 )

(M) Let  x = s i n θ . T h e n , θ = s i n 1 x .

Putting this in  q n ( 1 )  we get

s i n 1 ( 1 x ) 2 · θ = π 2

s i n 1 ( 1 x ) = π 2 + 2 θ

1 x = s i n ( π 2 + 2 θ ) { s i n ( π 2 + x ) = c o s x }

1 x = c o s 2 θ

1 x = 1 2 s i n 2 θ · { c o s 2 x = 1 2 s i n 2 x }

1 x = 1 2 x 2 · { s i n θ = x }

2 x 2 x = 0 x ( 2 x 1 ) = 0

s o , x = 0 x 2 x 1 = 0 x 2 x = 1 x = 1 2 .

Putting  x = 0 in qn (1) .

L.H.S  = s i n 1 ( 1 0 ) 2 s i n 1 0 = s i n 1 s i n x 2 0 = π 2 = R . H . S .

x = 1 2 q(1)

L.H.S= s i n 1 ( 1 1 2 ) 2 s i n 1 1 2 = s i n 1 ( 1 2 ) 2 s i n 1 1 2

= s i n 1 1 2 2 s i n 1 1 2

= s i n 1 1 2 = s i n 1 ( s i n π 6 ) = π 6  

So,  = 0 .

Option (c) is correct.

 

Q17.  t a n 1 ( x y ) t a n 1 x y x = y i s e q u a l t o ( A ) π 2 ( B ) π 3 ( C ) π 4 ( D ) 3 π 4

A.17.  t a n 1 x y t a n 1 x y x + y { t a n 1 x t a n 1 y = x y 1 + x y }

= t a n 1 { ( x y ) ( x y x + y ) 1 + x y · ( x y x + y ) }

= t a n 1 { x ( x + y ) ( x y ) · y y ( x + y ) y ( x + y ) + x ( x y ) y ( x + y ) }

= t a n 1 ( x 2 + x y x y + y 2 x y + y 2 x 2 x y )

= t a n 1 x 2 + y 2 x 2 + y 2

= t a n 1 1

= t a n 1 ( t a n π 4 )

= π 4 .

Option C is correct.

Maths Ncert Solutions class 12th Logo

Class 12 Math important reference books and preparation Tips

All students preparing for competitive exams must have the right resource list before starting their preparation. Shiksha brings the list of the most recommended books for competitive exam maths preparation. Students with the right resources excel in both board and competitive exams such as JEE, COMEDK, etc... Candidates can check the preparation tips and book recommendations below;

Important Maths Reference Books For Preparation

  • RD Sharma Mathematics for Class 12 ( ( Vol.I and II)
  • Objective Mathematics by R.D. Sharma 
  • Cengage Mathematics Book Series by G. Tewani
  • Problems in Calculus of One Variable by I.A. Maron 
  • Trigonometry and Co-ordinate Geometry by SL Loney

Students can also discuss other books available in the market for JEE Main preparation for Maths. Students must discuss the options with their teachers or mentors before buying the books.

Preparation Tips for Class 12 Math and JEE Main

  • Know Your Exam: Go through the Exam pattern and syllabus of the targeted exam, and read thoroughly to get an idea of the examination method and the level & type of questions asked. Students should also read some of the previous year's papers for the exam before starting the preparation
  • Pick the Right Preparation Resources: Take the help of seniors, teachers, and mentors while choosing the resources. Students must find resources which is crisp and concise and contain the same level of questions and examples as asked in the exam.
  • Make a Preparation Plan: Students should make a realistic preparation plan which should include enough time for practice and revision of the already learned concepts and allow them to cover all the concepts within the exam deadline
  • Practice: This step can be a key to success for students, students must practice more and more sums and numerals. Practice gives students an edge over computational errors, and critical thinking which helps boost confidence.
    Revisions: Students should revise the concepts and important sum techniques multiple time to make them very handy so that those concepts and techniques can be used in real-time exam situations.
  • Solve Mock Test: Students should try to solve as many Mock test/ Board sample papers as possible. Students should attempt Chapter-wise, sectional and complete mock test as per the preparation condition and time.
qna

Maths Ncert Solutions class 12th Exam

Student Forum

chatAnything you would want to ask experts?
Write here...