NCERT Solutions For Class 11 Maths Chapter 5 Complex Numbers and Quadratic Equations: Topics, Questions & Preparation

NCERT Maths 11th 2023 ( Ncert Solutions Maths class 11th )

Vishal Baghel

Vishal BaghelExecutive Content Operations

Updated on Sep 19, 2023 12:16 IST

NCERT Solutions Maths Class 11 Chapter 5 Complex Numbers and Quadratic Equations are provided on this page. Students can use the Class 11 NCERT Solutions Maths Chapter 5 Complex Numbers and Quadratic Equations to prepare for the board exams. Complex numbers and Quadratic equations is a chapter of high weightage in board exams and entrance exams. Hence students are advised to learn and revise the NCERT Solutions Maths Class 11 Chapter 5 Complex Numbers and Quadratic Equations. 

A number of the form a + ib, where a and b are real numbers, is called a complex number. Here a is called the real part, b is called the imaginary part of the complex number and i denotes the square root of -1. Students will learn the algebra of complex numbers in this chapter. Finding the square root of negative real numbers in the set of complex numbers is also explained here.

Complex Numbers and Quadratic Equations - Topics Covered 

  • Complex Numbers
  • Algebra of Complex Numbers
  • The Modulus and the Conjugate of a Complex Number
  • Argand Plane and Polar Representation
  • Quadratic Equation

Check the NCERT Solutions Maths Class 11 Chapter 5 Complex Numbers and Quadratic Equations below.

Q 5.3.1 x2 + 3 = 0

A 5.3.1 x2 + 3 = 0

=>x2 = –3

=>x = ±√3

=>x= ±√3i                       

[since, √-1 = i]

=>x = 0 ± √3i

Q 5.3.2 2x2 + x + 1 = 0

A 5.3.2 2x2 + x + 1 = 0

  • Comparing the given equation with ax2 + bx + c = 0, a = 2, b = 1 and c = 1
  • Hence, discriminant of the equation is
  • b2 – 4ac = 12 – 4 ×2×1 = 1 – 8 = –7
  • Therefore, the solution of the quadratic equation is
  •  -b ± √(b2-4ac) / 2a = (-1 ± √ 7) / 2.2 = -1 ± √7i / 4 
  • [since, √-1 = i]

Q 5.3.3 x2 + 3x + 9 = 0

  • A 5.3.3
  • x2 + 3x + 9 = 0
  • Comparing the given equation with ax2 + bx + c = 0
  • We have, a = 1, b = 3 and c = 9
  • Hence, discriminant of the equation is
  • b2 – 4ac = 32 – 4 × 1× 9 = 9 – 36 = –27
  • Therefore, the solution of the quadratic equation is
  • -b ± √(b2-4ac) / 2a = (-3 ± √ -27) / 2.1 = -3 ± 3√3i / 2
  • [since, √-1 = i]

Download Here NCERT Class 11th Maths Chapter 5 Complex Numbers and Quadratic Equations Solutions and PDF

Complex Numbers and Quadratic Equations Solutions and FAQs

Exercise 5.1

Express each of the complex number given in the Exercises 1 to 10 in the form a + ib.

 

Q1. (5i)  - 3 5 i

A.1.(5i)  - 3 5 i

= 5  ( 3 5 ) ×i2          [since i2 = –1]

= –3 (–1)

= 3

So, (5i)  ( 3 5 i )  = 3 + i0

 

Q2. i9 + i19

A.2.  i9 + i19

= i4x2+1 + i4x4+3      [Since, i4k+1 = i and i4k+3 = – i]

= i – i

= 0

So, i9 + i19 = 0 + i0

 

Q3. i– 39

A.3.  i– 39

1 i 3 9

1 i ( 4 x 9 + 3 )

1 i [Since, i4k+3 = –i]

1 i × 1
i
 [multiplying numerator and denominator by i]

i i 2

i ( 1 ) [since, i2 = –1]

= i

So, i –39 = 0 + i

 

Q4. 3(7 + i7) + i(7 + i7)

A.4. 3(7 + i7) + i(7 + i7)

= 21 + 21i + 7i + 7i2

= 21 + 28i + 7(–1)[since i2 = –1]

= 21 + 28i – 7

= 14 + 28i

 

Q5. (1 – i) – ( –1 + i6)

 A.5. (1 – i) – (–1 + i6)

= 1 – i + 1 – i6

= 2 – 7i

 

Q6. ( 1 5 + i 2 5 )  –  ( 4 + i 5 2 )

A.6.  ( 1 5 + i 2 5 )  –  ( 4 + i 5 2 )

1 5  +  i 2 5  – 4 –  i 5 2

1 5  – 4 + i  ( 2 5 5 2 )

1 2 0 5  + i  ( 4 2 5 1 0 )

1 9 5  + i  ( 2 1 1 0 )

1 9 5  – i  2 1 1 0

 

Q7. [ ( 1 3 + i 7 3 ) + ( 4 + i 1 3 ) ] ( 4 3 + i )

A.7.  [ ( 1 3 + i 7 3 ) + ( 4 + i 1 3 ) ] ( 4 3 + i )

1 3  +  i 7 3  + 4 +  i 1 3  +  4 3  – i

( 1 3 + 4 + 4 3 ) + i ( 7 3 + 1 3 1 )

1 + 1 2 + 4 3  +  i 7 + 1 3 3

1 7 3  +  i 5 3

 

Q8. (1 – i)4

A.8. (1 – i)4

= [(1 – i)2]2

= [1 + i2 – 2.i]2     [since, (a - b)2 = a2 + b2 – 2ab]

= [1 – 1 – 2i]2       [since, i2 = – 1]

= (–2i)2

= 4i2

= – 4

= – 4 + 0i

 

Q9. ( 1 3 + 3 i ) 3

A.9.  ( 1 3 + 3 i ) 3

( 1 3 ) 3 + ( 3 i ) 3 + 3 ( 1 3 ) ( 3 i ) ( 1 3 + 3 i ) [since, (a + b)3 = a3 + b3 + 3ab(a + b)]

1 2 7 + 2 7 i 3 + 3 i ( 1 3 + 3 i ) [since, i3 = i2.i = –i and i2 = –1]

1 2 7  + 27(–i) +  3 i 3  + (3i× 3i)

1 2 7  – 27i + i – 9

( 1 2 7 9 )  + i(–27 + 1)

2 4 2 2 7  – i26

 

Q10. ( 2 1 3 i ) 3

A.10. ( 2 1 3 i ) 3

[ ( 2 + 1 3 i ) ] 3

( 1 ) 3 [ ( 2 + 1 3 i ) 3 ]

( 8 ) [ 8 + i 3 2 7 + 3 . 2 . 1 3 i ( 2 + i 3 ) ] [since, (a + b)3 = a3 + b3 + 3ab(a + b)]

= (–1)  [ 8 i 2 7 + ( 2 i × 2 ) + ( 2 i × i 3 ) ] [since, i3 = i2.i = –i and i2 = –1]

= (–1)  [ 8 i 2 7 + 4 i + 2 i 2 3 ]

= (–1)  [ 8 2 3 + i ( 4 1 2 7 ) ]

2 2 3   i 1 0 7 2 7

Find the multiplicative inverse of each of the complex numbers given in the Exercises 11 to 13.

 

Q11. 4 – 3i

A.11. Let Z = 4 – 3i

Then  z ¯  = 4 + 3i

And, z|2 = 42+(-3)2= 16 + 9 = 25

Hence, z-1 = z ¯ | z | 2  =  4 + 3 i 2 5  =  4 2 5  +  i 3 2 5

 

Q12. √5  + 3i

A.12. Let z = √5  + 3i

Then,  z ¯  = √5  - 3i

And, |z|2 = ( √5 )2 + (3)2 = 5 + 9 = 14

So, multiplicative inverse of √5  + 3i is given by

 

Q13. –i

A.13. Let z = -i

Then  z ¯  = i

And |z|2 = (-1)2 = 1

So, multiplicative inverse of –i is given by

z-1 = z ¯ | z |  =  i 1  = i = 0 + i1

 

Exercise 5.2

Find the modulus and the arguments of each of the complex numbers in Exercises 1 to 2.

 

Exercise 5.3

Q1. x2+ 3 = 0

A.1. x2 + 3 = 0

=>x2 = –3

=>x =  ±√3

=>x= ± √3 i  [since, √-1  = i]

=>x = 0 ± √3 i

 

Q2. 2x2 + x + 1 = 0

A.2. 2x2 + x + 1 = 0

Comparing the given equation with ax2 + bx + c = 0, a = 2, b = 1 and c = 1

Hence, discriminant of the equation is

b2 – 4ac = 12 – 4 ×2×1 = 1 – 8 = –7

Therefore, the solution of the quadratic equation is

 

Q3. x2 + 3x + 9 = 0

A.3. x2 + 3x + 9 = 0

Comparing the given equation with ax2 + bx + c = 0

We have, a = 1, b = 3 and c = 9

Hence, discriminant of the equation is

b2 – 4ac = 32 – 4 × 1× 9 = 9 – 36 = –27

Therefore, the solution of the quadratic equation is

 

Q4. –x2 + x – 2 = 0

A.4. x2 + x – 2 = 0

Comparing the given equation with ax2 + bx + c = 0

We have, a = –1, b = 1 and c = –2

Hence, discriminant of the equation is

b2 – 4ac = 12 – 4 ×(-1)×(-2) = 1 – 8 = –7

Therefore, the solution of the quadratic equation is

 

Q5. x2 + 3x + 5 = 0

A.5. x2 + 3x + 5 = 0

Comparing the given equation with ax2 + bx + c = 0

We have, a = 1, b = 3 and c = 5

Hence, discriminant of the equation is

b2 – 4ac = 32 – 4 × 1 × 5 = 9 – 20 = –11

Therefore, the solution of the quadratic equation is

 

Q6. x2 – x + 2 = 0

A.6. x2 – x + 2 = 0

Comparing the given equation with ax2 + bx + c = 0

We have, a = 1, b = –1 andc = 2

Hence, discriminant of the equation is

b2 – 4ac = (-1)2 – 4 × 1 × 2 = 1 – 8 = –7

Therefore, the solution of the quadratic equation is

 

MiscellaneousExercise

Q1. Evaluate:

[ i 1 8 + ( 1 i ) 2 3 ] 3

A.1. [ i 1 8 + ( 1 i ) 2 3 ] 3

[ i 4′
4 + 2
+ 1 i 4′
6 + 1
]
3

[ 1 + 1 i ] 3 [as i4 ×k + 2 = –1 and i4 ×k + 1 = i]

[ 1 + i i 2 ] 3

= [–1 – i]3                        [as i2 = –1]

= (-1)3 (1 + i)3

= –1 [13 + i3 + 3 × 1 ×i(1 + i)]                        [since, (a + b)3 = a3 + b3 + 3ab(a + b)]

= –1 [1 – i3 + 3i(1 + i)]

= –1 [1 – i3 + 3i + 3i2]

= –1 [1 – i + 3i – 3]                           [Since, i2 = –1 and i3 = i2.i = –i]

= –1 [–2 + 2i]

= 2 – 2i

 

Q2. For any two complex numbers z1 and z2, prove that Re (z1 z2) = Re z1 Re z2 – Imz1 Imz2

A.2. To proof, Re (z1z2) = Re z1 Re z2 – Imz1 Imz2

Let z­­1 = x1 + iy1 and z2 = x2 + iy2 be two complex number.

Then, z1.z2 = (x1 + iy1)(x2 + iy2)

=x1x2 + ix1y2 + ix2y1 + i2y1y2

= x1x2 + ix1y2 + ix2y1y1y2            [since, i2 = -1]

= (x1x2y1y2) + i(x1y2 + x2y1)

As, Re(z1z2) = (x1)(x2) – (y1)(y2)

Now, RHS = Re z1 Re z2Imz1Imz2 = x1x2y1y2

Therefore, Re(z1z2) = Rez1Rez2Imz1Imz2

Hence proved.

 

Q3. Reduce ( 1 1 4 i 2 1 + i )   ( 3 4 i 5 + i )  to the standard form.

A.3. ( 1 1 4 i 2 1 + i )     ( 3 4 i 5 + i )

[ 1 + i 2 ( 1 4 i ) ( 1 4 i ) ( 1 + i ) ]   [   3 4 i 5 + i ]

( 1 + i 2 + 8 i 1 + i 4 i 4 i 2 )   (   3 4 i 5 + i )

( 9 i 1 5 3 i )   (   3 4 i 5 + i )

( 9 i 1 ) ( 3 4 i ) ( 5 3 i ) ( 5 + i )

2 7 i 3 6 i 2 3 + 4 i 2 5 + 5 i 1 5 i 3 i 2

= .. [since, i2 = –1]

3 3 + 3 1 i 2 8 1 0 i

3 3 + 3 1 i 2 8 1 0 i  ×  2 8 + 1 0 i 2 8 + 1 0 i  [multiplying denominator and numerator by 28 + 10i]

( 3 3′  
2 8
)
+ ( 3 3′
1 0 i
)
+ ( 3 1 i′  
2 8
)
+ ( 3 1 i′
1 0 i
)
2 8 2 ( 1 0 i ) 2
[since (a – b)(a + b) = a2b2]

9 2 4 + 3 3 0 i + 8 6 8 i + 3 1 0 i 2 7 8 4 1 0 0 i 2

9 2 4 + 1 1 9 8 i 3 1 0 7 8 4 + 1 0 0 [since, i2 = –1]

6 1 4 + 1 1 9 8 i 8 8 4

2 ( 3 0 7 + 5 9 9 i ) 8 8 4

3 0 7 + 5 9 9 i 4 4 2

3 0 7 4 4 2  +  i 5 9 9 4 4 2

a 2 ( c 2 + d 2 ) + b 2 ( c 2 + d 2 ) ( c 2 + d 2 ) 2

( a 2 + b 2 ) ( c 2 + d 2 ) ( c 2 + d 2 ) 2

a 2 + b 2 c 2 + d 2

Hence proved.

 

Q5. Convert the following in the polar form:

1 + 7 i ( 2 i ) 2 ,  (ii)  1 + 3 i 1 2 i

A.5. i. Given, z =  1 + 7 i ( 2 i ) 2

1 + 7 i 2 2 + i 2 2 . 2 . i

1 + 7 i 4 + i 2 4 i

1 + 7 i 4 1 4 i  [since,  i 2  = -1]

1 + 7 i 3 4 i

( 1 + 7 i )   × ( 3 + 4 i ) ( 3 4 i )   × ( 3 + 4 i )  [multiply denominator and numerator by (3 + 4i)]

3 + 4 i + 2 1 i + 2 8 i 2 3 2 ( 4 i ) 2 [since, (a – b)(a + b) = a2b2]

3 + 2 5 i 2 8 9 + 1 6  [since,  i 2  = -1]

2 5 +   2 5 i 2 5

2 5 ( 1 + i ) 2 5

= –1 + i

Let, r cos  θ  = –1 and r sin  θ  = 1

Squaring and adding both sides we get,

r2 (cos2 θ +sin2 θ ) = (–1)2 + 12

=>r2 = 2 (since cos2 θ + sin2 θ  = 1)

=>r = √2  (as r> 0, r ≠  −√2  )

Solve each of the equation in Exercises 6 to 9.

 

Q11. If a + ib = ( x + i ) 2 2 x 2 + 1 , prove that a2 + b2 = ( x 2 + 1 ) 2 ( 2 x 2 + 1 ) 2 .

A.11. Let, z = a + ib

( x + i ) 2 2 x 2 +   1

x 2 +   i 2 + 2 x i 2 x 2 +   1 [since, (a + b)2 = a2 + b2 + 2ab]

x 2   1 + 2 x i 2 x 2 +   1 [since, i2 = –1]

x 2   1 2 x 2 +   1  +  i 2 x 2 x 2 +   1

So, |z|2 = a2 + b2

( x 2   1 ) 2 ( 2 x 2 +   1 ) 2  +  ( 2 x ) 2 ( 2 x 2 +   1 ) 2

( x 2 ) 2 +   1 2   2 . x 2 . 1 +   4 x 2 ( 2 x 2 +   1   ) 2 [since, (a + b)2 = a2 + b2 + 2ab]

x 4 +   1 2 x 2 +   4 x 2 ( 2 x 2 +   1 ) 2

x 4 +   2 x 2 +   1 ( 2 x 2 +   1 ) 2

( x 2 +   1 ) 2 ( 2 x 2 +   1 ) 2 [as, (a + b)2 = a2 + b2 + 2ab]

Hence proved.

 

Q12. Let z1 = 2 – i, z2 = –2 + i. Find

R E ( z 1 z 2 z 1 )  (ii)  I M ( 1 z 1 z 1 )

A.12. Z1 = 2 – i, z2 = –2 + i

Z1z2= (2 – i)(–2 + i)

= –4 + 2i + 2i – i2

= –4 + 4i + 1  [since, i2 = –1]

= –3 + 4i

z 1 ¯  = 2 + i

i.  z 1 z 2 z 1 ¯  =    3 + 4 i 2 + i

3 + 4 i 2 + i  ×  2 i 2 i  [multiply denominator and numerator by (2 – i)]

6 + 3 i + 8 i 4 i 2 2 2   i 2

6 + 1 1 i + 4 4 ( 1 ) [since, i2 = –1]

6 + 4 + 1 1 i 4 + 1  

2 + 1 1 i 5

2 5  +  1 1 5 i

So, Re(  z 1 z 2 z 1 ¯  ) =  2 5

ii.  1 z 1 z 1 ¯  =  1 ( 2 i ) ( 2 + i )

1 2 2   i 2

1 4 + 1 [since, i2 = –1]

1 5  + 0i

Therefore, Im  ( 1 z 1 z 1 ¯ )  = 0

 

Q13. Find the modulus and argument of the complex number 1 + 2 i 1 3 i .

A.13. Given, z = 1 + 2 i 1 3 i

1 + 2 i 1 3 i  ×  1 + 3 i 1 + 3 i  [multiplying denominator and numerator by (1 + 3i)]

1 + 3 i + 2 i + 6 i 2 1 2   ( 3 i ) 2

1 + 5 i + 6 i 2 1 9 i 2

1 6 + 5 i 1 + 9 [since, i2 = –1]

5 + 5 i 1 0

5 ( 1 + i ) 1 0

1 + i 2

1 2  +  1 2 i

Let, r cos  θ  =  1 2  and r sin  θ  =  1 2

Squaring and adding both sides we get,

 

Q14. Find the real numbers x and y if (x – iy) (3 + 5i) is the conjugate of –6 – 24i.

A.14. Let z = (x – iy)(3 + 5i)

= 3x + 5xi – 3yi – 5yi2

= (3x + 5y) + (5x – 3y)i

Given,  z ¯  = –6 – 24i

=> (3x + 5y) – (5x – 3y)i = –6 – 24i

Equating real and imaginary part,

3x + 5y = –6 ----------- (1)

5x – 3y = 24 ----------- (2)

Multiplying (1) by 3 and (2) by 5 and adding them, we get

9x + 15y + 25x – 15y = –18 + 120

=> 34x = 102

=>x = 102/34 = 3

Putting x = 3 in (1) we get,

3 × 3 + 5y = –6

=> 9 + 5y = –6

=> 5y = –6 – 9

=> 5y = –15

=>y = –15/5 = –3

Hence, the values of x and y are 3 and –3 respectively.

 

Q15. Find the modulus of 1 + i 1 i 1 i 1 + i  .

A.15.  1 + i 1 i  –  1 i 1 + i

( 1 + i ) 2   ( 1 i ) 2 ( 1 i ) ( 1 + i )

1 2 + i 2 + 2 . 1 . i   ( 1 2 + i 2   2 . 1 . i ) 1 2   i 2 [Since, (a + b)2 = a2 + b2 + 2ab;

(ab)2 = a2 + b2 – 2ab;

a2b2 = (a + b)(a – b)]

1 1 + 2 i 1 + 1 + 2 i 1 + 1 [Since, i2 = –1]

4 i 2

= 2i

 

Q16. If (x + iy)3 = u + iv, then show that u x + v y = 4 ( x 2 y 2 )  .

A.16. (x + iy)3 = u + iv

=>x3 + (iy)3 + 3.x.iy(x + iy) = u + iv   [since, (a + b)3 = a3 + b3 + 3ab(a + b)]

=>x3iy3 + 3x2yi + 3xy2i2 = u + iv

=>x3iy3 + 3x2yi – 3xy2 = u + iv                [since, i2 = -1]

=> (x3 – 3xy2) + i(3x2yy3) = u + iv

Equating real and imaginary part we get,

u = x3 – 3xy2 and v = 3x2yy3

Now,  u x  +  v y

x 3 3 x y 2 x  +  3 x 2 y   y 3 y

x ( x 2   3 y 2 ) x  +  y ( 3 x 2   y 2 ) y

= x2 – 3y2 + 3x2y2

= 4x2 – 4y2

= 4(x2y2)

Hence proved.

 

Q20. If ( 1 + i 1 i ) m = 1  , then find the least positive integral value of m.

A.20. We have,

( 1 + i 1 i ) m  = 1

=>  ( 1 + i 1 i   × 1 + 1 + ) m  = 1 [multiply denominator and numerator of LHS by (1 + i)]

=>  ( 1 + i + i + i 2 1 2   i 2 ) m = 1[since, (a – b)(a + b) = a2b2]

=>  ( 1 + 2 i 1 1 + 1 ) m = 1[since, i2 = –1]

=>  ( 2 i 2 ) m  = 1

=>im = 1

=>im = i4k              [since, i4k = 1]

So, m = 4k where k = integer

Therefore, least positive integral value of m is,

m = 4 × 1

m = 4

Explore exams which ask questions on Ncert Solutions Maths class 11th

Select your preferred stream

qna

Ncert Solutions Maths class 11th Exam

Student Forum

chatAnything you would want to ask experts?
Write here...