NCERT Solutions Maths Class 11 Chapter 13 Limits and Derivatives: Topics, Questions, Preparation

NCERT Maths 11th 2023 ( Maths Ncert Solutions class 11th )

Salviya Antony

Salviya AntonySenior Executive - Content

Updated on Dec 24, 2024 14:38 IST

Class 11th Limits and Derivatives: Students can check NCERT Solutions Maths Class 11 Chapter 12 Limits and Derivatives on this page. Limits and derivatives Class 11 NCERT solutions are prepared and reviewed by expert teachers. We provide the accurate solutions of Maths Class 11 NCERT Chapter 12 Limits and Derivatives for free. Students are advised to learn Class 11 Maths Limits and derivatives Solutions so that they can achieve high scores from this chapter.

Limit of a function at a point is the common value of the left and right hand limits, if they coincide. Limits and Derivatives is an introduction to Calculus. Calculus deals with the study of change in the value of a function as the points in the domain change. Students will learn the definition of derivative and study some algebra of derivatives in this chapter. Derivatives of certain standard functions are also present in this chapter. This chapter is of great importance as far as board exams and entrance exams are concerned. Students can access out NCERT Solutions for free.

Topics Covered -  Limits and Derivatives 

  • Intuitive Idea of Derivatives
  • Limits
  • Limits of Trigonometric Functions
  • Derivatives

Check the NCERT Solutions Maths Class 11 Chapter 12 Limits and Derivatives below.

Q 13.1 limx→3 x+ 3

A 13.1 limx→3x + 3 = 3 + 3 = 6

Q 13.2 limx→π (x-22/7)

A 13.2 limx→π (x-22/7) = π-22/7

Q 13.4 limx→4 4x+3/x-2

A 13.4 limx→4 4x+3/x-2 = 4 X 4 + 3 / 4 - 2 = 16+3 /2 = 19/2      

Download Here NCERT Class 11th Maths Chapter 12 Limits and Derivatives Solutions PDF

Class 11th Limits and Derivatives Solutions and FAQs

Ex 13.1

Q1.  l i m x 3  x+ 3

A.1.  l i m x 3  x + 3 = 3 + 3 = 6.

 

Q2.  lim x π ( x 2 2 7 )

A.2.  l i m x π ( x 2 2 7 ) = π 2 2 7

 

Q3.  lim r 1 π r 2

A.3.  l i m r 1 π r 2 = π · ( 1 ) 2 = π

 

Q4.  lim x 4 4 x + 3 x 2

A4.  l i m x 4 4 x + 3 x 2 = 4 × 4 + 3 4 2 = 1 6 + 3 2 = 1 9 2

 

Q5.  lim x 1 x 1 0 + x 5 + 1 x 1

A.5.  l i m x 1 x 1 0 + x 5 + 1 x 1 = ( 1 ) 1 0 + ( 1 ) 5 + 1 ( 1 ) 1 = 1 1 + 1 2 = 1 2

 

Q6.  lim x 0 ( x + 1 ) 5 1 x

A.6.  l i m x 0 ( x + 1 ) 5 1 x = l i m x 0 x 5 + 5 x 4 + 1 0 x 3 + 1 0 x 2 + 5 x + 1 1 x

= l i m x 0 x 4 + 5 x 3 + 1 0 x 2 + 1 0 x + 5 .

(0)4 + 5(0)3 + 10(0)2 + 10(0) + 5

= 5.

 

Q7.  lim x 2 3 x 2 x 1 0 x 2 4

A.7.

= l i m x 2 x ( 3 x + 5 ) 2 ( 3 x + 5 ) ( x 2 ) ( x + 2 )

= l i m x 2 ( x 2 ) ( 3 x + 5 ) ( x 2 ) ( x + 2 )

= l i m x 2 3 x + 5 x + 2

= 3 × 2 + 5 2 + 2

= 6 + 5 4

= 1 1 4 .

 

Q8.  lim x 3 x 4 8 1 2 x 2 5 x 3

 

= l i m x 3 ( x + 3 ) ( x 2 + 9 ) 2 x + 1 .

= ( 3 + 3 ) ( 3 2 + 9 ) 2 × 3 + 1

= 6 × 1 8 6 + 1

= 1 0 8 7

 

 

Q.10  lim z 1 z 1 3 1 z 1 6 1

A.10. 

= l i m z 1 [ z 1 3 1 1 3 z 1 ] ÷ l i m z 1 [ z 1 6 1 1 6 z 1 ]

We know that,

l i m x a x n a n x a = n a n 1

So,

= 1 3 × 6 = 2

 

Q11.  lim x 1 a x 2 + b x + c c x 2 + b x + a = a + b + c     0

A.11.  l i m x 1 a x 2 + b x + c c x 2 + b x + a = a + b + c c + b + a = 1

 

Q12.  lim x 2 1 x + 1 2 x + 2

A.12.

= 1 2 × ( 2 ) = 1 4 .

 

Q13.  lim x 0 a x b x

A.13.  l i m x 0 s i n a x b x = 1 b l i m x 0 s i n a x a x × a

= a b l i m x 0 s i n a x a x  

= a b

 

Q14.  l i m x 0 s i n a x s i n b x , a , b 0

A.14.  l i m x 0 s i n a x s i n b x = l i m x 0 s i n a x a x × a x s i n b x b x × b x

= a b

 

Q15.  l i m x π s i n ( π x ) π ( π x )

A15.  l i m x π s i n ( π x ) π ( π x ) = 1 π × l i m x π s i n ( π x ) π x

= 1 π .

 

Q16.  l i m x 0 c o s x π x

A.16.  l i m x 0 c o s x π x = c o s 0 π 0 = 1 π

 

Q17.

 

= l i m x 0 2 s i n 2 x 2 s i n 2 x 2

= l i m x 0 ( s i n x x ) 2 × x 2 l i m x 0 ( s i n x 2 x 2 ) 2 x 2 2

= ( 1 ) 2 × x 2 × 4 ( 1 ) 2 × x 2

= 4

 

Q18.  l i m x 0 a x + x c o s x b s i n x

A18.  l i m x 0 a x + x c o s x b s i n x = l i m x 0 x ( a + c o s x ) b s i n x

= 1 b × ( a + c o s 0 ) 1

= a + 1 b

 

Q19.  l i m x 0 x s e c x

A.19.  l i m x 0 x s e c x = l i m x 0 x c o s x

= 0 c o s 0

= 0 1

= 0.

 

Q20.  l i m x 0 s i n a x + b x a x + s i n b x a , b , a + b 0

A.20.  l i m x 0 s i n a x + b x a x + s i n b x = l i m x 0 s i n a x a x × a x + b x l i m x 0 a x + s i n b x b x × b x .

l i m x 0 s i n a x a x × l i m x 0 a x + l i m x 0 b x l i m x 0 a x + l i m x 0 s i n b x b x × l i m x 0 b x

= l i m x 0 a x + l i m x 0 b x l i m x 0 a x + l i m x 0 b x

= l i m x 0 a x + b x a x + b x

= l i m x 0 1

= 1.

 

Q21. l i m x 0 ( c o s e c x c o t x )

A.21.  l i m x 0 ( c o s e c x c o t x ) = l i m x 0 ( 1 s i n x c o s x s i n x )

= l i m x 0 ( 1 c o s x s i n x )

= l i m x 0 2 s i n 2 x 2 2 s i n x 2 c o s x 2   { c o s 2 x = 1 2 s i n 2 x 1 c o s 2 x = 2 s i n 2 x 1 c o s x = 2 s i n 2 x 2 s i n 2 x = 2 s i n x c o s x s i n x = 2 s i n x 2 c o s x 2 {

= l i m x 0 x 2

= t a n 0 2 = 0 .

 

Q.22.  l i m x π 2 t a n 2 x x π 2

A.22.  l i m x x 2 t a n 2 x x π 2

Put y = x  π 2  . So that as y 0 cos  π 2

 

Q23. Find  l i m x 0 f ( x )  and  l i m x 1 f ( x )  , where f (x)  { 2 x + 3 , x 0 3 ( x + 1 ) , x > 0 }

A.23. Given f (x)  { 2 x + 3 , x 0 3 ( x + 1 ) , x > 0 }

for  l i m x 0 f ( x ) ,

left hand limit, L.H.S =  l i m x 0 f ( x )  =  l i m x 0 ( 2 x + 3 )

= 2 0 + 3 = 3.

Right hand limit, R.H.L =  l i m x 0 + f ( x ) = l i m x 0 + 3 ( x + 1 )

= (0 + 1) = 3 1 = 3.

Thus,  l i m x 0 f ( x ) = l i m x 0 + f ( x ) = l i m x 0 f ( x ) = 3

For  l i m x 1 f ( x ) ,

L.H.L =  l i m x 1 f ( x ) = l i m x 1 3 ( x + 1 ) = 3 ( 1 + 1 ) = 3 × 2 = 6

R.H.L =  l i m x 1 + f ( x ) = l i m x 1 + 3 ( x + 1 ) = 3 ( 1 + 1 ) = 3 × 2 = 6 .

Thus,  l i m x 1 f ( x ) = l i m x 1 + f ( x ) = l i m x 1 f ( x ) = 6 .

 

 

Q26.Find  l i m x 0 f ( x ) ,  wheref (x)  { x | x | , x 0 0 , x = 0

A.26.Given, f (x)  { x | x | , x 0 0 , x = 0

 

L.H.S =  l i m x 0 f ( x ) = l i m x 0 x x = l i m x 0 1 = 1

R.H.L  l i m x 0 + f ( x ) = l i m x 0 + x x = l i m x 0 + 1 = 1

Thus,  l i m x 0 f ( x ) l i m x 0 + f ( x )

i e,  l i m x 0 f ( x )  does not exist.

 

Q27.Find  l i m x 5 f ( x ) , w h e r e  f (x)  = | x | 5

A27.  l i m x 5 f ( x ) = l i m x 5 | x | 5

= | 5 | 5

= 5 5

= 0

Q28. Supposef (x) =  { a + b x , x < 1 4 , x = 1 b a x , x > 1  and if  l i m x 1 f ( x )  = f (1) what are possible values of a and b?

A.28. Given, f (x) =  { a + b x , x < 1 4 , x = 1 b a x , x > 1

Since we need  l i m x 1 f ( x )  we need,

LHL =

l i m x 1 f ( x ) = l i m x 1 ( a + b x ) = a + b × 1 = a + b

and RHL =

l i m x 1 + f ( x ) = l i m x 1 + ( b a x ) = b - a × 1 = b - a

Given,  l i m x 1 f ( x ) = f ( 1 ) :  we have the following equations

a + b = 4 ____ (1)

b - a = 4 ____ (2)

Adding (1) and (2) we get,

2b = 8

b = 4

Putting b = 4 in (1) we get

a + 4 = 4

a = 0

 

Thus,  l i m x a f ( x ) l i m x a + f ( x )

So,  l i m x a f ( x )  does not exist at a = 0.

 

Q31. If the function f(x) satisfies  l i m x 1 f ( x ) 2 x 2 1 = π  , evaluate  l i m x 1 f ( x ) .

A.31. Given,  l i m x 1 f ( x ) 2 x 2 1 = π

l i m x 1 f ( x ) 2 l i m x 1 x 2 1 = π

l i m x 1 [ f ( x ) 2 ] = π l i m x 1 ( x 2 1 )

l i m x 1 f ( x ) l i m x 1 2 = π ( 1 2 1 )

l i m x 1 f ( x ) 2 = 0 .

l i m x 1 f ( x ) = 2

 

 

Ex 13.2.

Q1.Find the derivative

A.1. Given, f(x)=x2- 2 ., f ( 1 0 ) = ?

We have, 

f ( 1 0 ) = l i m h 0 f ( 1 0 + h ) f ( 1 0 ) h

= l i m h 0 [ ( 1 0 + h ) 2 2 ] [ 1 0 2 2 ] h

l i m h 0 1 0 2 + h 2 + 2 0 h 2 1 0 2 + 2 h

l i m h 0 h ( h + 2 0 ) h

l i m h 0 h + 2 0

=20

 

Q2.Find the derivative of x at x = 1.

A.2. Given, f(x)=x, f  (1)=?

We have,

f ( 1 ) = l i m h 0 f ( 1 + h ) f ( 1 ) h

  = l i m h 0 1 + h 1 h

= l i m h 0 h h

= l i m h 0 1

=1

 

Q3.Find the derivative of 99x at x = l00

A.3. Given, f(x)= 99x, f  (100)= ?

So, f(100)=  h 0 f ( 1 0 0 + h ) f ( 1 0 0 ) h

= l i m h 0 9 9 ( 1 0 0 + h ) 9 9 ( 1 0 0 ) h

= l i m h 0 9 9 × 1 0 0 + 9 9 × h 9 9 × 1 0 0 h

= l i m h 0 9 9 h h

= l i m h 0 9 9

=99

 

Q4.Find the derivative of the following functions from first principle.

(i)  x 3 2 7 (ii) (x -1)(x-2)

(iii)  1 x 2  (iv)  x + 1 x 1

A.4.(i) Given,  f ( x ) = x 3 2 7 .

So,  f ( x ) = l i m h 0 f ( x + h ) f ( x ) h

= l i m h 0 [ ( x + h ) 3 2 7 ] [ x 3 2 7 ] h

= l i m h 0 x 3 + h 3 + 3 x h ( x + h ) 2 7 x 3 + 2 7 h

= l i m h 0 h ( h 2 + 3 x ( x + h ) ) h

= l i m h 0 h 2 + 3 x ( x + h )

=0+3 x(x+ 0)

=3x2

(ii) Given, f(x) =(x-1)(x-2)

=x2- 3x+2

So,  f ( x ) = l i m h 0 f ( x + h ) f ( x ) h

l i m h 0 [ ( x + h ) 2 3 ( x + h ) + 2 ] [ x 2 3 x + 2 ] h

l i m h 0 x 2 + h 2 + 2 x h 3 x 3 h + 2 x 2 + 3 x 2 h

l i m h 0 h ( h + 2 x 3 ) h

= l i m h 0 h + 2 x 3

= 2x – 3.

(iii) Given, f(x)=  1 x 2

So,  f ( x ) = l i m h 0 f ( x + h ) f ( x ) h

= l i m h 0 1 ( x + h ) 2 1 x 2 h

= l i m h 0 x 2 ( x + h ) 2 ( x + h ) 2 x 2 h

= l i m h 0 x 2 x 2 h 2 2 x h h x 2 ( x + h ) 2  

= l i m h 0 h ( h 2 x ) h x 2 ( x + h ) 2

= l i m h 0 h 2 x x 2 ( x + h ) 2

= 0 2 x x 2 ( x + 0 ) 2

= 2 x x 4

= 2 x 3

(iv) Given, f(x)=  x + 1 x 1

f ( x ) = l i m h 0 f ( x + h ) f ( x ) h

= l i m h 0 1 h [ f x + h + 1 x + h 1 x + 1 x 1 ]

= l i m h 0 1 h [ ( x + h + 1 ) ( x 1 ) ( x + 1 ) ( x + h 1 ) ( x + h 1 ) ( x 1 ) ]

= l i m h 0 1 h [ x 2 x + h x h + x 1 x 2 h x + x x h + 1 ( x 1 ) ( x + h 1 ) ]

= l i m h 0 1 h [ 2 h ( x 1 ) ( x + h 1 ) ]

= l i m h 0 2 ( x 1 ) ( x + h 1 )

= 2 ( x 1 ) ( x 1 ) = 2 ( x 1 ) 2

 

Q5.For the function

f ( x ) = x 1 0 0 1 0 0 + x 9 9 9 9 + + x 2 2 + x + 1

Prove that  f ( 1 ) = 1 0 0 f ( 0 )

A.5. Given f ( x ) = x 1 0 0 1 0 0 + x 9 9 9 9 + + x 2 2 + x + 1

l i m h 0 ( x + h ) 1 0 0 x 1 0 0 1 0 0 h + l i m h 0 ( x + h ) 9 9 x 9 9 9 9 h + + l i m x 0 ( x + h ) 2 x 2 2 h   + l i m x 0 x + l i m x 0 1

= 1 0 0 x 9 9 1 0 0 + 9 9 x 9 8 9 9 + + 2 x 2 + 0 + 1

= x 9 9 + x 9 8 + + x + 1

At x=0,

f(X)  =1.

and at x=1,

f ( 1 ) = 1 9 9 + 1 9 8 + + 1 2 + 1 + 1

=100  ×  1

=100  × f ( 0 )

Hence,  f ( 1 ) = 1 0 0 f ( 0 )

 

Q6.Find the derivative of  x n + a x n 1 + a 2 x n 2 + + a n 1 x + a n for some fixed real number a.

A.6. Given, f ( x ) = x n + a x n 1 + a 2 x n 2 + + a n 1 x + a n .

We know that,

d d x ( x x ) = n x x 1

So,

f ( x ) = d d x x x + d d x a x x 1 + d d x a 2 x x 2 + + d d x   a x 1 x + d d x a x = n x n 1 + a ( n 1 ) x n 2 + a 2 ( n 2 ) x n 3 + + a n 1 + 0 .

( d a x d x = a d x d x and d a d x = 0whereaisconstant

 

Q7. For some constants aand b, find the derivative of

(i)(x- a) + (x - b)(ii)  ( a x 2 + b ) 2  (iii)  x 9 x b

A.7. (c) Given, f(x)=(x-a)(x-b)

where a and b are constants.

So,

f ( x ) = ( x a ) d d x ( x b ) + ( x b ) d d x ( x a )

=(x-a)+(x-b)

= 2x– a- b. 

(ii) Given f(x)=  ( a x 2 + b ) 2 .  where ab are constant

So,  f ( x ) = d d x ( a x 2 + b ) 2

= d d x ( a 2 x 4 + b 2 + 2 a x 2 b )

= d d x a 2 x 4 + d d x b 2 + d d x 2 a x 2 b

4 a 2 x 3 + 0 + 4 a x b

4 a x ( a x 2 + b ) .

(iii) Given, f(x)=  x 9 x b  where a and bare constants

So,  f ( x ) = ( x b ) d d x ( x a ) ( x a ) d d x ( x b ) ( x b ) 2

= ( x b ) ( x a ) ( x b ) 2

= a b ( x b ) 2

 

Q8. Find the derivative of  x n a n x a  for some constant a.

A.8. Given, f(x)=  x n a n x a .

So,  f ( x ) = ( x a ) d d x ( x n a 3 ) d d x ( x a ) ( x n a n ) ( x a ) 2 = ( x a ) n x n 1 ( x n a n ) ( x a ) 2

= ( x a ) n x n 1 ( x n a n ) ( x a ) 2

= n x n 1 x n a x n 1 x n + a n ( x a ) 2

= n x n x x n a x n 1 + a n ( x a ) 2

 

Q9. Find the derivative of

(i)  2 x 3 4  (ii)  ( 5 x 3 + 3 x 1 ) ( x 1 )

(iii)  x 3 ( 5 + 3 x )  (iv)  x 5 ( 3 6 x 9 )

(v)  x 4 ( 3 4 x 5 )  (vi)  2 x + 1 x 2 3 x 1

A.9. (i)  f ( x ) = 2 x 3 4

f ( x ) = d d x ( 2 x 3 4 )

= 2 d x d x 0

=2.

(ii) Given, f(x)=  ( 5 x 3 + 3 x 1 ) ( x 1 )

So,  f ( x ) = ( 5 x 3 + 3 x 1 ) d d x ( x 1 ) + ( x 1 ) d d x ( 5 x 3 + 3 x 1 )

= ( 5 x 3 + 3 x 1 ) . 1 + ( x 1 ) ( 1 5 x 2 + 3 )

5 x 3 + 3 x 1 + i 5 x 3 + 3 x 1 5 x 2 3

= 2 0 x 3 1 5 x 2 + 6 x 4 .

(iii) Given, f(x) =  x 3 ( 5 + 3 x )

So,  f ( x ) = x 3 d d x ( 5 + 3 x ) + ( 5 + 3 x ) d x 3 d x = x 3 3 + ( 5 + 3 x ) ( 3 ) x 4

= 3 x 3 1 5 x 4 9 x 3

= 1 5 x 4 6 x 3

= 3 x 4 ( 5 + 2 x ) .

(iv) Given, f(x)=  x 5 ( 3 6 x 9 ) .

f ( x ) = x 5 d d x ( 3 6 x 9 ) + ( 3 6 x 9 ) d d x x 5 .

= x 5 ( 6 x 9 x 1 0 ) + ( 3 6 x 9 ) 5 x 4

x 5 ( 5 4 x 1 0 ) + 1 5 x 4 3 0 x 5

= 5 4 x 5 3 0 x 5 + 1 5 x 4

= 2 4 x 5 + 1 5 x 4

(v) Given, f(x)=  x 4 ( 3 4 x 5 ) .

So,  f ( x ) = x 4 d d x ( 3 4 x 5 ) + ( 3 4 x 5 ) d d x x 4

= x 4 ( 4 x 5 × x 6 ) + ( 3 4 x 5 ) ( 4 x 5 )

= 2 0 x 1 0 1 2 x 5 + 1 6 x 1 0 .

= 3 6 x 1 0 1 2 x 5 .

= 3 6 x 1 0 1 2 x 5 .

(vi) Given, f(x)=  2 x + 1 x 2 3 x 1

So,  f ( x ) = d d x ( 2 x + 1 ) d d x ( x 2 3 x 1 )

= ( x + 1 ) d d x 2 d d x ( x + 1 ) ( x + 1 ) 2 ( 3 x 1 ) d x 2 d x x 2 d d x ( 3 x 1 ) ( 3 x 1 ) 2

= 2 ( x + 1 ) 2 2 x ( 3 x 1 ) 3 x 2 ( 3 x 1 ) 2

= 2 ( x + 1 ) 2 6 x 2 2 x 3 x 2 ( 3 x 1 ) 2

= 2 ( x + 1 ) 2 3 x 2 2 x ( 3 x 1 ) 2

= 2 ( x + 1 ) 2 x ( 3 x 2 ) ( 3 x 1 ) 2

 

Q10. Find the derivative of cos x from first principle.

A.10. Given, f(x) = cos x

f ( x + h ) = c o s ( x + h )

By first principle,

f ( x ) = l i m x h f ( x + h ) f ( x ) h

= l i m x h 1 h [ c o s ( x + h ) c o s x ]

= l i m x h 1 h [ 2 s i n ( x + h + x 2 ) s i n ( x + h x 2 ) ]

= l i m x h 1 h [ 2 s i n ( 2 x + h 2 ) s i n ( h 2 ) ]

= l i m x h 1 h [ 2 s i n ( 2 x + h 2 ) s i n ( h 2 ) ]

= l i m x h s i n ( 2 x + h 2 ) × l i m x h s i n h / 2 h / 2

= s i n ( 2 x + 0 2 ) × 1 = s i n x .

 

Q11.Find the derivative of the following functions:

(i)sin x cos x  (ii) s e c x  (iii)5 sec x + 4 cosx

(iv) c o s e c x  (v)3cot x + 5 cosec x

(vi)  5 s i n x 6 c o s x + 7  (vii)  2 t a n x 7 s e c x

A.11. (i) f(x)=sin x cos x

So,  f ( x ) = l i m h 0 f ( x + h ) f ( x ) h

= l i m h 0 s i n ( x + h ) c o s ( x + h ) s i n x c o s x h

= l i m h 0 1 2 h × [ 2 s i n ( x + h ) c o s ( x + h ) 2 s i n x c o s x ]

= l i m h 0 1 2 h [ s i n 2 ( x + h ) s i n 2 x ]

= l i m h 0 1 2 h [ 2 c o s 2 ( x + h ) + 2 x 2 s i n 2 ( x + h ) 2 x 2 ]

= l i m h 0 1 h [ c o s ( 2 x + h ) s i n h ]

= l i m h 0 c o s ( 2 x + h ) × l i m h 0 s i n h h

= c o s ( 2 x + 0 )

= c o s 2 x

(ii) f ( x ) = s e c x

So,  f ( x ) = l i m h 0 f ( x + h ) f ( x ) h

= l i m h 0 1 h [ s e c ( x + h ) s e c x ]

= l i m h 0 1 h [ 1 c o s ( x + h ) 1 c o s x ]

= l i m h 0 1 h [ c o s x c o s ( x + h ) c o s ( x + h ) c o s x ]

= l i m h 0 1 h [ 2 s i n ( x + x + h 2 ) s i n ( x ( x + h ) 2 ) c o s ( x + h ) c o s x ]

= l i m h 0 1 h [ 2 s i n ( 2 x + h 2 ) s i n ( h / 2 ) c o s ( x + h ) c o s x ]

= l i m h 0 ( 1 s i n ( 2 x + h 2 ) c o s ( x + h ) c o s x × l i m h 0 ( 1 ) s i n h / 2 h / 2

= s i n x c o s x c o s x × 1

= t a n x s e c x .

(iii) Given f(x)=5 sec x+4 cosx.

So,  f ( x ) = l i m h 0 f ( x + h ) f ( x ) h

= l i m h 0 5 s e c ( x + h ) + 4 c o s ( x + h ) [ 5 s e c x + 4 c o s x ] h .

= l i m h 0 5 h [ s e c ( x + h ) s e c x ] + l i m h 0 4 h [ c o s ( x + h ) c o s x ]

= l i m h 0 5 h [ 1 c o s ( x + h ) 1 c o s x ] + l i m h 0 4 h [ 2 s i n ( x + h + x 2 ) s i n ( x + h x 2 ) ]

= l i m h 0 5 h [ c o s x c o s ( x + h ) c o s ( x + h ) ( c o s x ) ] + l i m h 0 4 h [ 2 s i n ( 2 x + h 2 ) s i n h 2 ]

= l i m h 0 5 h [ 2 s i n ( 2 x + h 2 ) s i n ( h / 2 ) c o s ( x + h ) c o s x ] 4 l i m h 0 s i n ( 2 x + h 2 ) l i m h 0 s i n h / 2 h / 2

= s i n ( 2 x + 0 2 ) c o s ( x + 0 ) c o s x × 1 4 s i n ( 2 x 2 )

= 5 s i n x c o s x 1 c o s x 4 s i n x

= 5 t a n x s e c x 4 s i n x

(iv) Given f ( x ) = c o s e c x

f ( x ) = l i m h 0 f ( x + h ) f ( x ) h

= l i m h 0 1 h [ c o s e c ( x + h ) c o s e c x ]

= l i m h 0 1 h [ 1 s i n ( x + h ) 1 s i n x ]

= l i m h 0 1 h [ s i n x s i n ( x + h ) s i n ( x + h ) s i n x ]

= l i m h 0 1 h [ 2 c o s ( x + x + h 2 ) s i n ( x ( x + h ) 2 ) ] s i n ( x + h ) s i n x ]

= l i m h 0 1 h [ 2 c o s ( x + x + h 2 ) s i n ( x ( x + h ) 2 ) s i n ( x + h ) s i n x ]

= l i m h 0 1 h [ 2 c o s ( 2 x + h 2 ) s i n ( h / 2 ) ] s i n ( x + h ) s i n x ]

= l i m h 0 c o s ( 2 x + h 2 ) s i n ( x + h ) s i n x × ( 1 ) s i n ( 2 ) h / 2 )

= c o s ( 2 x + 0 2 ) s i n ( x + 0 ) s i n x × ( 1 )

= c o s x s i n x × 1 s i n x

= c o t x c o s e c x

(v) Given,f(x)=3 cot x+5cosecx.

So,  f ( x ) = l i m h 0 f ( x + h ) f ( x ) h   = 2 c o s ( x + 0 ) c o s x × 1 + 7 s i n ( 2 x + 0 2 ) × ( 1 )

= l i m h 0 3 c o t ( x + h ) + 5 c o s e c ( x + h ) [ 3 c o t x + 5 c o s x )

h 0 3 h [ c o t ( x + h ) c o t x ] + l i m h 0

= 5 h [ c o s e c ( x + h ) c o s e c x ]

= l i m h 0 3 h [ c o s ( x + h ) s i n ( x + h ) c o s x s i n x ] + l i m h 0 5 h [ 1 s i n ( x + h ) 1 s i n x ]

= l i m h 0 3 h [ c o s ( x + h ) s i n x c o s x s i n ( x + h ) s i n ( x + h ) s i n x ] + l i m h 0 5 h [ s i n x s i n ( x + h ) s i n ( x + h ) s i n x ]

= l i m h 0 3 h [ s i n ( x ( x + h ) ) s i n ( x + h ) s i n x + l i m h 0 5 h [ 2 c o s ( x + x + h 2 ) s i n ( x ( x + h ) 2 ) s i n ( x + h ) s i n x

= l i m h 0 3 s i n ( x + h ) s i n x × l i m h 0 ( 1 ) s i n h h + l i m h 0 5 h [ 2 c o s ( 2 x + h 2 ) s i n ( h / 2 ) s i n ( x + h ) s i n x

= 3 s i n x s i n x × ( 1 ) + 5 l i m h 0 c o s ( 2 x + h 2 ) s i n ( x + h ) s i n x × ( 1 ) l i m h 0 s i n h / 2 h / 2 .

= 3 c o s e c 2 x 5 c o t x c o s e c x .

(vi) Given,  f ( x ) = 5 s i n x 6 c o s x + 7

f ( x ) = l i m h 0 f ( x + h ) f ( x ) h

= l i m h 0 1 h [ 5 s i n ( x + h ) 6 c o s ( x + h ) + 7 5 s i n x + 6 c o s x 7 ]

= l i m h 0 1 h [ s i n ( x + h ) s i n x ] l i m h 0 6 h [ c o s ( x + h ) c o s x ]

= l i m h 0 5 h [ 2 c o s ( x + h + x 2 ) s i n ( x + h x 2 ) ] l i m h 0 6 h [ 2 s i n ( x + h + x 2 ) s i n ( x + h x 2 ) ]

= l i m h 0 5 c o s ( 2 x + h 2 ) × l i m h 0 s i n ( h / 2 ) h / 2 + l i m h 0 s i n ( 2 x + h 2 ) × l i m h 0 s i n h / 2 h / 2

= 5 c o s ( 2 x + 0 2 ) × 1 + 6 × s i n ( 2 x + 0 2 ) × 1

= 5 c o s x + 6 s i n x .

(vii) Given

f ( x ) = 2 t a n x 7 s e c x

f ( x ) = l i m h 0 f ( x + h ) f ( x ) h

= l i m h 0 2 t a n ( x + h ) 7 s e c ( x + h ) ( 2 t a n x 7 s e c x ) h

= l i m h 0 2 h [ t a n ( x + h ) t a n x ] l i m h 0 7 h [ s e c ( x + h ) s e c x ]

= l i m h 0 2 h [ s i n ( x + h ) c o s ( x + h ) s i n x c o s x ] l i m h 0 7 h [ 1 c o s ( x + h ) 1 x ] .

= l i m h 0 2 h [ s i n ( x + h ) c o s x s i n x c o s ( x + h ) c o s ( x + h ) c o s x ] l i m h 0 7 h [ c o s x c o s ( x + h ) c o s ( x + h ) c o s x ]

= l i m h 0 2 h [ s i n ( ( x + h ) x ) c o s ( x + h ) c o s x ] l i m h 0 7 h [ 2 s i n ( x + h + x 2 ) s i n c o s ( x ( x + h ) ) 2 ]

= l i m h 0 h 2 c o s ( x + h ) c o s ( x + h ) c o s x ] + l i m h 0 7 h [ 2 s i n ( 2 x + h 2 ) s i n ( h / 2 ) c o s ( x + h ) c o s x ]

= l i m h 0 2 c o s ( x + h ) c o s x × l i m h 0 s i n h h + l i m h 0 s i n ( 2 x + h 2 ) c o s ( x + h ) c o s x . ( 1 ) l i m h 0 s i n h / 2 h / 2

= 2 c o s ( x + 0 ) c o s x × 1 + 7 s i n ( 2 x + 0 2 ) × ( 1 )

  = 2 s c 2 x 7 s e c x t a n x

 

Miscellaneous Exercise.

 

Q2.  ( x + a )

A.2. Given, f(x) = x + a.

So, f(x) =  l i m h 0 f ( x + h ) f ( x ) h

= l i m h 0 ( x + h + a ) ( x + a ) h

= l i m h 0 h h

= 1

 

Q3.  ( p x + q ) ( r x + s )

A.3. Given, f(x) = ( p x + q ) ( r x + s ) = p r + p o x . + q r x + q s .

= l i m h 0 S o , f ( x ) = d d x ( p r + p s x + q r x + q s )

= d d x ( p r ) + d d x ( p s x ) + d d x ( q r x ) + d d x ( q s )

= 0 + p s q y x 2 + 0

= p s q r x 2 .

 

Q4. (ax + b) (cx + d)2

A.4. Given, f (x) = (ax + b) (cx + d)2

So, f´(x) = (ax +b)  d d x ( c x + d ) 2 + ( c x + d ) 2 d d x ( a x + b )

= ( a x + b ) d d x [ ( c + d ) ( c x + d ) ] + ( c x + d ) 2 a

= ( a x + b ) [ ( c + d ) d d x ( x + d ) + ( c + d ) d d x ( c + d ) ] + a ( c x + d ) 2

= ( a x + b ) [ c ( c x + d ) + c ( c x + d ) ] + a ( c x + d ) 2

= ( a x + b ) · 2 · c ( c x + d ) + a ( c x + d ) 2

 

Q5.  a x + b c x + d

A.5. Given, f (x) = a x + b c x + d

So, f (x) =  ( c x + d ) d d x ( a x + b ) ( a x + b ) d d x ( c x + d ) ( ( x + d ) 2

= ( c x + d ) a ( a x + b ) c ( c x + d ) 2

= a c x + a d a c x c b ( c x + d ) 2

= a d b c ( c x + d ) 2

 

Q6.  1 + 1 x 1 1 x

A.6. Given, f (x) = 1 + 1 x 1 1 x = x + 1 x x 1 x = x + 1 x 1

So, f´(x) =  ( x 1 ) d d x ( x + 1 ) ( x + 1 ) d d x ( x 1 ) ( x 1 ) 2

( x 1 ) ( x + 1 ) ( x 1 ) 2

= x 1 x 1 ( x 1 ) 2 = 2 ( x 1 ) 2

 

Q7.  1 a x 2 + b x + c

A.7. Given, f (x) = 1 a x 2 + b x + c

So, f´(x) =  ( a x 2 + b x + c ) d d x ( 1 ) 1 · d d x ( a x 2 + b x + c ) ( a x 2 + b x + c ) 2

= ( a x 2 + b x + c ) ( 0 ) ( 2 a x + b ) ( a x 2 + b x + c ) 2

= ( 2 a x + b ) ( a x 2 + b x + c ) 2

 

Q8.  ( a x + b ) p x 2 + q x + r

A.8. Given, f (x) = ( a x + b ) p x 2 + q x + r

So, f(x) =  ( p x 2 + q x + r ) d d x ( a x + b ) ( a x + b ) d d x ( p x 2 + q x + r ) ( p x 2 + q x + r ) 2

  = ( p x 2 + q x + r ) a ( a x + b ) ( 2 x p + q ) ( p x 2 + q x + r ) 2

= a p x 2 + a q x + a r 2 a p x 2 a q x 2 b p x b ( p x 2 + q x + 9 ) 2 q .

= a p x 2 2 b p x + a r b q ( p x 2 + q x + r ) 2

 

Q9.  p x 2 + q x + r a x + b

A.9. Given, f (x) =  p x 2 + q x + r a x + b

f ( x ) = ( a x + b ) d d x ( p x 2 + q x + r ) ( p x 2 + q x + r ) d d x ( a x + b ) ( a x + b ) 2

= ( a x + b ) ( 2 x p + q ) ( p x 2 + q x + r ) ( a ) ( a x + b ) 2

= 2 a p x 2 + 2 b p x + a q x + b q a p x 2 a q x a r ( a x + b ) 2

= a p x 2 + 2 b p x + b q a r ( a x + b ) 2

 

Q10.  a x 4 b x + c o s x

A.10. Given, f (x) = = a x 4 b x + c o s x

So, f´(x) =  l i m h 0 f ( x + h ) f ( x ) h

= l i m h 0 1 h [ a ( x + n ) 4 b ( x + h ) 2 + c o s ( x + h ) ( a x 4 b x 2 + c o s x ) ]

= l i m h 0 a h [ 1 ( x + h ) 4 1 x 4 ] l i m h 0 b h [ 1 ( x + h ) 2 1 x 2 ] + l i m h 0 1 h [ c o s ( x + h ) c o s x ]

= l i m h 0 a h [ x 4 ( x + h ) 4 ( x + h ) 4 · x 4 ] l i m h 0 b h [ x 2 ( x + h ) 2 ( x + h ) 2 · x 2 ] +

l i m h 0 1 h [ 2 s i n ( x + h + x 2 ) s i n ( x + h x 2 ) ]

= l i m h 0 a h [ x 4 x 4 4 x 3 h 6 x 2 h 2 4 x h 3 h 3 x 4 · ( x + h ) 4 ] l i m h 0 b h [ x 2 x 2 h 2 2 x h x 2 ( x + h ) 2 ]

+ l i m h 0 a h [ 2 s i n ( 2 x + h 2 ) s i n h 2 ]

= l i m h 0 a h [ h ( 4 x 3 6 x 2 h 4 x h 2 h 2 ) x 4 ( x + h ) 4 ] l i m h 0 b h [ h ( h 2 x ) x 2 ( x + h ) 2 ]

l i m h 0 s i n ( 2 x + h 2 ) l i m h 0 s i n h 2 h 2

= l i m h 0 a ( 4 x 3 6 x 2 h 4 x h 2 h 2 ) x 4 ( x + h ) 4 l i m h 0 b ( h 2 x ) x 2 ( x + h ) 2

s i n ( 2 x + 0 2 ) × 1

= a ( 4 x 3 ) x 4 · x 4 b ( 2 x ) x 2 · x 2 s i n x .

= 4 a x 5 + 2 b x 3 s i n x

 

 

Q12. (ax + b)n

A.12. Given, f (x) = (ax + b)n

Chain rule,  d d x u ( x ) n = n u ( x ) n 1 d u d x u ( x )  where

u(x) is a function of x.

So, f´(x) =  d d x ( a x + b ) n

= n ( a x + b ) n 1 d d x ( a x + b )

= n a ( a x + b ) n 1

 

Q13. (ax + b)n (cx + d)m

A.13. Given, f´ (x) = (ax + b)n (cx + d)m

So, f’(x) =  ( a x + b ) n d d x ( c x + d ) n + ( c x + d ) m d d x ( a x + b ) n

= ( a x + b ) x · m c ( c x + d ) m 1 + ( c x + d ) m n a ( a x + b ) x 1

= ( a x + b ) n 1 ( c x + d ) m 1 [ ( a x + b ) · m c + ( c x + d ) n a ]

= ( a x + b ) n 1 ( c x + d ) m 1 [ m c ( a x + b ) + n a ( c x + d ) ]

 

Q14. sin(x + a)

A.14. Given, f (x) = sin(x + a)

So, f (x) =  l i m h 0 f ( x + h ) f ( x ) h

= l i m h 0 s i n ( x + h + a ) s i n ( x + a ) h

= l i m h 0 1 h · 2 c o s ( x + h + a + x + a 2 ) s i n ( x + h + a ( x + a ) 2 )

= l i m h 0 c o s ( 2 x + 2 a + h 2 ) l i m h 0 s i n ( h 2 ) h 2

= c o s ( 2 x + 2 a + 0 ) 2 × 1

= cos (x + a)

 

Q15. cosec x. cot x

A.15. Given f (x) = cosec x. cot x.

By Leibnitz product rule,

So, g´(x) =  l i m h 0 g ( x + h ) g ( x ) h

= l i m h 0 c o t ( x + h ) c o t x h

= l i m h 0 1 h [ c o s ( x + h ) s i n ( x + h ) c o s x s i n x ]

= l i m h 0 1 h [ s i n x c o s ( x + h ) c o s x s i n ( x + h ) s i n x s i n ( x + h ) ]

= l i m h 0 1 h [ s i n ( x ( x + h ) ) s i n x s i n ( x + h ) ]   [ csin ( A B ) = s i n A c o s B c o s A s i n B ]

= l i m h 0 1 h [ s i n ( h ) s i n x . s i n ( x + h ) ]

= l i m h 0 1 s i n x s i n ( x + h ) × ( 1 ) l i m h 0 s i n h h

= 1 s i n x s i n ( x + 0 ) × ( 1 )

= -cosec2x.______(2)

And h´(x) =  l i m h 0 h ( x + h ) h ( x ) h

= l i m h 0 c o s e c ( x + h ) c o s e c x h

= l i m h 0 1 h [ 1 s i n ( x + h ) 1 s i n x ]

= l i m h 0 1 h [ s i n x s i n ( x + h ) s i n x · s i n ( x + h ) ]

= l i m h 0 1 h [ 2 c o s ( x + x + h 2 ) s i n ( x ( x + h ) 2 ) s i n x s i n ( x + h ) . ]

 

 

Q16.  c o s x 1 + s i n x

A.16. Given, f (x) =  c o s x 1 + s i n x

So, f´(x) =  ( 1 + s i n x ) d d x ( c o s x ) c o s x d d x ( 1 + s i n x ) ( 1 + s i n x ) 2

Putting (2) and (3) in (1) we get,

f ( x ) = ( 1 + s i n x ) ( s i n x ) c o s x ( c o s x ) ( 1 + s i n x ) 2

= s i n x s i n 2 x c o s 2 x ( 1 + s i n x ) 2

= s i n x ( s i n 2 x + c o s 2 x ) ( 1 + s i n x ) 2

= ( s i n x + 1 ) ( 1 + s i n x ) 2 = 1 1 + s i n x .

 

Q17.  s i n x + c o s x s i n x c o s x

A.17. Given, f (x) =  s i n x + c o s x s i n x c o s x

So, f´(x) =  s i n x c o s x d d x ( s i n x + c o s x ) ( s i n x + c o s 2 ) d d x ( s i n x c o s x ) ( s i n x c o s x ) 2

Let g(x) = cos x and p(x) = sin x.

{from so g’(x) A ) (upto equation 3)

Let g(x) = cos2 and p(x) = sin x.

So, g´(x) =  l i m h 0 g ( x + h ) g ( x ) h

= l i m h 0 1 h [ c o s ( x + h ) c o s x ]

= l i m h 0 1 h [ 2 · s i n ( x + h + x 2 ) s i n ( x + h x 2 ) ]

= l i m h 0 1 h [ 2 s i n ( 2 x + h 2 ) s i n ( h 2 ) ]

= s i n ( 2 x + 0 2 ) × 1

= -sin x ______ (2)

And p´(x) =  l i m h 0 p ( x + h ) p ( x ) h

= l i m h 0 s i n ( x + h ) s i n x h

= l i m h 0 1 h 2 c o s ( 2 x + h 2 ) s i n ( h 2 )

= l i m h 0 c o s ( 2 x + h 2 ) × l i m h 0 s i n ( h 2 ) ( h 2 )

= cos x _____ (3)

Putting (2) and (3) in (1) we get,

f ( x ) = ( s i n x c o s x ) [ c o s x s i n x ] ( c s i n x + c o s x ) [ c o s x + s i n x ] ( s i n x c o s x ) 2

= ( s i n x c o s x ) 2 ( s i n x + c o s x ) 2 ( s i n x c o s x ) 2

= ( s i n 2 x + c o s 2 x ) + 2 s i n x c o s x ( s i n 2 x + c o s 2 x ) 2 s i n x c o s x ( s i n x c o s x ) 2

= 1 1 ( s i n x c o s x ) 2 = 2 ( s i n x c o s x ) 2

 

Q18.  s e c x 1 s e c x + 1

A.18. Given, f (x) =  s e c x 1 s e c x + 1

= 1 c o s x 1 1 c o s x + 1

= 1 c o s x 1 + c o s x

So, f´(x) =  ( 1 + c o s x ) d d x ( 1 c o s x ) ( 1 c o s x ) d d x ( 1 + c o s x ) ( 1 + c o s x ) 2

= ( 1 + c o s x ) ( 1 ) d d x ( c o s x ) ( 1 c o s x ) d d x ( c o s x ) ( 1 + c o s x ) 2

Let g(x) = cos x.

So, g´(x)  = l i m h 0 g ( x + h ) g ( x ) h

= l i m h 0 c o s ( x + h ) c o s x h

= l i m h 0 2 h s i n ( x + h + x 2 ) s i n ( x + h x 2 )

= l i m h 0 2 h s i n ( 2 x + h 2 ) s i n ( h 2 )

= l i m h 0 s i n ( 2 x + h 2 ) × l i m h 0 s i n h 2 h 2

= s i n ( 2 x + 0 2 ) × 1

= -sin x.

So, f´(x)  ( 1 + c o s x ) ( 1 ) ( s i n x ) ( 1 c o s x ) ( s i n x ) ( 1 + c o s x ) 2

= s i n x + c o s x s i n x + s i n x s i n x c o s x ( 1 + c o s x ) 2

= 2 s i n x ( 1 + c o s x ) 2

= 2 s i n x ( 1 + 1 s e c x ) 2 = 2 s i n x × s e c 2 x ( s e c x + 1 ) 2 = 2 s e c x · s i n x ( s i n x + 1 ) 2 · c o s x .

= 2 s e c x · t a n x ( s i n x + 1 ) 2

 

Q19. sinnx

A.19. Given, f(x) =sinnx

By chain rule,

f´(x) = n(sin x)n-1 d d h  sin x

Let (gx) = sinx

So, g´(x)  l i m h 0 g ( x + h ) g ( x ) h

= l i m h 0 s i n ( x + h ) s i n x h

= l i m h 0 2 h c o s ( 2 a + h 2 ) s i n ( h 2 )

= l i m h 0 c o s ( 2 x + h 2 ) × l i m h 0 s i n ( h 2 ) h 2

c o s ( 2 x + 0 ) 2 × 1

= cos x.

So, f´(x) = n(sin x)n-1 cos x.

 

Q20.  a + b s i n x c + d c o s x

A.20. Given, f (x) = a + b s i n x c + d c o s x

f´(x) =  ( c + d c o s x ) d d x ( b s i n x ) ( a + b s i n x ) d d x ( c + d c o s x ) ( c + d c o s x ) 2

f ( x ) = ( c + d c o s x ) · b · d d x ( s i n x ) ( a + b s i n x ) · d · d d x ( c o s x ) ( c + d c o s x ) 2 _ _ _ _ _ ( 1 )

{Copy (A)}

So, g´(x) =  l i m h 0 g ( x + h ) g ( x ) h

= l i m h 0 1 h [ c o s ( x + h ) c o s x ]

= l i m h 0 1 h [ 2 · s i n ( x + h + x 2 ) s i n ( x + h x 2 ) ]

= l i m h 0 1 h [ 2 s i n ( 2 x + h 2 ) s i n ( h 2 ) ]

= s i n ( 2 x + 0 2 ) × 1

= sin x ______ (2)

And p´(x) =  l i m h 0 p ( x + h ) p ( x ) h

= l i m h 0 s i n ( x + h ) s i n x h

= l i m h 0 1 h 2 c o s ( 2 x + h 2 ) s i n ( h 2 )

= l i m h 0 c o s ( 2 x + h 2 ) × l i m h 0 s i n ( h 2 ) ( h 2 )

= cos x _____ (3)

So, put (2) and (3) in (1) we get,

f ( x ) = ( c + d c o s x ) ( b · c o s x ) ( a + b s i n x ) ( d · s i n x ) ( c + d c o s x ) 2

= b e c c o s x + b d c o s 2 x + a d s i n x + b d s i n 2 x ( c + d c o s x ) 2

= b c c o s x + a d s i n x + b d ( c o s 2 x + s i n 2 x ) ( c + d c o s x ) 2

= b c c o s x + a d s i n x + b d ( c + d c o s x ) 2

 

 

Q22. x4 (5 sin x 3 cos x)

A.22. Given, f (x) = x4. (5 sin x 3 cos x)

f ( x ) = x 4 d d x ( 5 s i n x 3 c o s x ) + ( 5 s i n x 3 c o s x ) d x 4 d x .

= x 4 [ 5 d d x s i n x 3 · d c o s x d x ] + [ 5 s i n x 3 c o s x ] · 4 x 3

As  d d x s i n x = c o s x

and  d d x c o s x = s i n x

Thus,

f ( x ) = x 4 [ 5 c o s x + 3 s i n x ] + [ 5 s i n x 3 c o s x ] · 4 x 3

= x 3 [ 5 c o s x + 3 x s i n x + 2 0 s i n x 1 2 c o s x ]

= x 3 [ 5 x c o s x + 3 x s i n x + 2 0 s i n x 1 2 c o s x ] .

 

Q23. (x2 + 1) cos x

A.23. Given, f (x) = (x2 + 1) cos x

f´(x) = (x2 + 1) d d x c o s x + c o s x d d x ( x 2 + 1 )

= ( x 2 + 1 ) ( s i n x ) + c o s x ( 2 x + 0 ) [ d d x c o s x = s i n x ]

= x2 sin x sin x + 2x cos x.

 

Q24. (ax2 + sin x) (p +q cos x)

A.24. Given, f (x) = (ax2 + sin x) (p +q cos x).

So, f´(x) = (ax2 + sin x) d d x   ( p + q c o s x ) + ( p + q c o s x ) d d x ( a x 2 + s i n x )

= ( a x 2 + s i n x ) ( 0 + q d d x c o s x ) + ( p + q c o s x ) ( a d d x ( x 2 ) + d d x s i n x )

= ( a x 2 + s i n x ) ( q ( s i n x ) ) + ( p + q c o s x ) ( a · 2 x + c o s x )

= q sin x(ax2 + sin x) + (p + q cos x) (2ax + cos x)

 

 

Q26.  4 x + 5 s i n x 3 x + 7 c o s x

A.26. Given, f (x) =  4 x + 5 s i n x 3 x + 7 c o s x

So,

f ( x ) = ( 3 x + 7 c o s x ) d d x ( 4 x + 5 s i n x ) ( 4 x + 5 s i n x ) d d x ( 3 x + 7 c o s x ) ( 3 x + 7 c o s x ) 2

= ( 3 x + 7 c o s x ) ( 4 x + 5 c o s x ) ( 4 x + 5 s i n x ) ( 3 7 s i n x ) ( 3 x + 7 c o s x ) 2

 

= 1 5 x c o s x + 2 8 c o s x + 2 8 x s i n x 1 5 s i n x + 3 5 ( c o s 2 x + s i n 2 x ) ( 3 x + 7 c o s x ) 2

= 3 5 + 1 5 x c o s x + 2 8 c o s x + 2 8 x s i n x 1 5 s i n x ( 3 x + 7 c o s x ) 2

 

Q27.  x 2 c o s ( π 4 ) s i n x

A.27. Given, f (x) =  x 2 c o s ( π 4 ) s i n x

= x 2 s i n x × c o s π 4

So, f´(x) =

= c o s π 4 [ 2 · x s i n x x 2 c o s x s i n 2 x ]

= x c o s π 4 [ 2 s i n x x c o s x s i n 2 x ] .

 

Q28.  x 1 + t a n x

A.28. Given, f (x) =  x 1 + t a n x

= x 1 + s i n x c o s x

= c o s x · x c o s x + s i n x

S o , f ( x ) = ( c o s x + s i n x ) d d x ( x c o s x ) ( x c o s x ) d d x ( c o s x + s i n x ) ( c o s x + s i n x ) 2

= ( c o s x + s i n x ) ( x s i n x + c o s x ) ( x · s i n x c o s x + x c o s 2 x ) ( c o s x + s i n x ) 2

= x c o s x s i n x + c o s 2 x x s i n 2 x + s i n x c o s x + x s i n x c o s x x c o s 2 x ( c o s x + s i n x ) 2

= c o s 2 x + s i n x c o s x x ( s i n 2 x + c o s 2 x ) ( c o s x + c s i n x ) 2

Dividing numerator and denominator by cos2x we get,

= c o s 2 x c o s 2 x + s i n x c o s x · c o s x c o s x x 1 c o s 2 x ( c o s x c o s x + s i n x c o s x ) 2

= 1 + t a n x x s e c 2 x ( 1 + t a n x ) 2

 

Q29. (x + sec x) (x tan x)

A.29. Given, f (x) = (x + sec x) (x tan x)

So, f´(x) = (x + see x)  d d x ( x t a n x ) + ( x t a n x ) d d x ( x + s e c x ) .

= ( x + s e c x ) ( d x d x d d x t a n x ) + ( x t a n x ) ( d x d x + d d x s e c x )

Let g(x) = tan x.

 

Q30.  x s i n n x

A.30. Given, f (x) =  x s i n n x

So, f´(x) =  ( s i n x x d x d x ) ( x d d x s i n x x ) ( s i n x x ) 2

=  s i n x x x · n ( s i n x ) x 1 d d x s i n x ( s i n x ) 2 x

= ( s i n x ) n x · x ( s i n x ) n 1 · c o s x ( s i n x ) 2 n

= ( s i n x ) n 1 [ s i n x n x · c o s x ] ( s i n x ) 2 n

= s i n x n · x · c o s x ( s i n x ) 2 n ( n 1 )

= s i n x n x c o s x ( s i n x ) n + 1

Explore exams which ask questions on Maths Ncert Solutions class 11th

Select your preferred stream

qna

Maths Ncert Solutions class 11th Exam

Student Forum

chatAnything you would want to ask experts?
Write here...