NCERT Solutions Class 11 Maths Chapter 3 Trigonometric Functions: Topics, Questions, Easy Tricks & Preparation

NCERT Maths 11th 2023 ( Ncert Solutions Maths class 11th )

Salviya Antony

Salviya AntonySenior Executive - Content

Updated on Dec 10, 2024 14:48 IST

NCERT Solutions For Class 11 Maths Chapter 3 Trigonometric Functions: We have provided NCERT Solutions Maths Class 11th Chapter 3 Trigonometric Functions on this page. The NCERT Class 11 Maths Chapter 3 Trigonometric Functions solutions are prepared by our expert teachers. Students can access the NCERT Solutions Maths Class 11 Chapter 3 Trigonometric Functions for free. This chapter has many equations which students have to learn thoroughly. In Trigonometry Class 11 NCERT solutions, students will learn the concept of trigonometric ratios to trigonometric functions and their properties. Class 11th Trigonometry is important for JEE and NEET. 

Trigonometric functions are the functions of an angle of a triangle. Sine, cosine, tangent, cotangent, secant and cosecant are the basic trigonometric functions. The NCERT Solutions Maths Class 11 Chapter 3 Trigonometric Functions is a best tool for the Class 11 students to perform well in the board exams. They can expect questions from Applications of trigonometry for entrance exams. Students can access out NCERT Solutions for free.

NCERT Solutions For Class 11 Maths Chapter 3 Trigonometric Functions - Topics Covered

  • Angles
  • Trigonometric functions
  • Trigonometric Functions of Sum and Difference of Two Angles 
  • Trigonometric Equations

Check the NCERT Solutions Maths Class 11 Chapter 3 Trigonometric Functions below.

Q 3.1 Find the radian measures corresponding to the following degree measures:

(i)         25°      

(ii)        – 47°30'        

(iii)       240°    

(iv)       520°

A 3.1

(i)            25°

Solution:We know that 180° = π radian.

Hence, 25° = π/180 X 25 radian= 5π/36 radians.

(ii).-47°30'

Solution: We know that 180°=π radian,

Hence, -47°30' = -47 × 1/2 degree= -47/2× π/180 radians.

= -19π/72 radians

(iii) 240°

Solution:We know that, 180°=π radian.

Hence, 240°= 240× π/180 radian.

= 4π/3 radian.

(iv) 520°

Solution: We know that, 180°= π radian.

Hence, 520°= 520°× π/180 radian.

= 26π/9 radian.

Q 3.3 A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?

A 3.3 Given that a wheel makes 360 revolutions in one minute

Then, number of revolutions in one second = 360/60 =6.

In 1 complete revolution the wheel turns 360°= 2 π radian.

So, In 6 revolution, the wheel will turns 6×2π radian = 12π radian.

Hence, in one second the wheel will turn an angle of 12π radian.

Find the values of the trigonometric functions in sin 765°

A 3.2.6

sin 765°

We know that value of sun x repeats after an interval of 2π or 360°.

Sin (765°) = sin (2×360°+45°)

= sin 45°

= 1/√2

Download Here NCERT Class 11th Maths Chapter 3 Trigonometric Functions

NCERT Solutions For Class 11 Maths Chapter 3 Trigonometric Functions FAQs

Exercise 3.1

Q1. Find the radian measures corresponding to the following degree measures:

(i) 25° (ii) – 47°30′ (iii) 240° (iv) 520°

A.1. (i)25°

Solution:We know that 180° = π radian.

Hence, 25° =  π 180  25 radian=  3 6  radians.

(ii).47°30′

Solution: We know that 180° = π radian,

Hence, -47°30′= -47 × 1 2  degree=  4 7 2 × π 180°  radians.

1 7 2  radians

(iii) 240°

Solution:We know that, 180°= radian.

Hence, 240°= 240× π 180  radian.

3  radian.

(iv) 520°

Solution: We know that, 180= radian.

Hence, 520°= 520°× π 180  radian.

2 9  radian.

 

Q2. Find the degree measures corresponding to the following radian measures  ( U s e π = 2 2 7 ) .

(i) 1 1 1 6 (ii)-4 (iii) 5 π 3  (iv)  7 π 6

A.2. (i)  1 1 1 6

We know that radian= 180°,

Hence,  1 1 1 6  radian=  1 1 1 6 ×
180°
π
 =  1 1 1 6  ×  1 8 0 ° 2 2 / 7  =  1 1 1 6  ×  7 2 2  ×180 °

315 8 0

=39 0  3 ° 8

= 39 ° 3 × 6 0 8  minute (as 1 ° =60)

=39°+22′+  1 2 '

=39°+22′+  60 2 ' '  (as 1′=60”)

=39°+22′+30”.

=39° 22′ 30”.

(ii) -4

We know that radian = 180°.

Hence: -4 radian = -4× 180° π  = 4×  1 8 0 ° 2 2 7  = 4×180°×  7 2 2  .

= -  2520 11 0

=229 0  1 ° 1 1

=229+  1 × 6 0 ' 1 1

=229+5′+  5 11 '  .

=229°+5′+27″

=229° 5′27″

(iii)  3 .  .

Solution: We know that, π radian= 180°.

Here  3  radian =  3  × 180° π
 =300°

(iv)  6

Solution: We know that radian =180° .

Here,  6  radian =  6 × 180° π =210°

 

Q3. A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?

A.3. Given that a wheel makes 360 revolutions in one minute

Then, number of revolutions in one second =  3 6 0 6 0  =6.

In 1 complete revolution the wheel turns 360°= 2π radian.

So, In 6 revolution, the wheel will turns 6×2π radian = 12π radian.

Hence, in one second the wheel will turn an angle of 12π radian.

 

Q4. Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm ( U s e π = 2 2 7 ) .

A.4. Here l = 22cm.

r =100cm.

Ø = ?

Hence by r =
1
Ø

= Ø = l r  =  2 2 1 0 0  radian

2 2 1 0 0 × 180°
π

2 2 1 0 0  × 180° ×  7 2 2

63 5 0

=12  3 ° 5  = 12°  3 × 6 0 ' 5 = 1 2 ° 3 6 '

 

Q5. In a circle of diameter 40 cm, the length of a chord is 20 cm. Find the length of minor arc of the chord.

A.5. Given, diameter of circle = 40 cm

So, radius, r =  4 0 2  cm = 20 cm

Length of chord (AB) = 20cm

In OAB

OA = OB=AB=20 cm

Hence, AOAB is equilateral triangle and end of the angle is 60°

:. Ø =60° = 60 ×
π
180
radian = π 3  radian

Hence, length of minor are of the chord, l=rØ.

l = 20 × π 3  cm

l =  2 3  cm.

 

Q7. Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length

(i) 10 cm (ii) 15 cm (iii) 21 cm

A.7. Here,

r= length of pendulum.

r= 75 cm.

(i)Are of length, l = 10 cm

Ø=  l r  =  1 0 c m 7 5 c m = 2 1 5  radian.

(ii) are of length, l = 15 cm.

So, Ø=  l r  =  1 5 c m 7 5 c m = 1 5  radian.

(iii) are for length, l= 21 cm.

So, Ø=  l r = 2 1 c m 7 5 c m = 7 2 5  radian.

 

Exercise 3.2

Find the values of other five trigonometric functions in Exercises 1 to 5.

 

Exercise 13.3

Q1.  s i n 2 π 6 + c o s 2 π 3 t a n 2 π 4 = 1 2

A.1.

( 1 2 ) 2 + ( 1 2 ) 2 1 2 = 1 4 + 1 4 1 = 1 + 1 + 4 4 = 2 4 = 1 2

=R.H.S

 

Q2.  2 S i n 2 π 6 + c o s e c 2 7 π 6 c o s 2 π 3 = 3 2

= 1 2 + 4 . 1 4

= 1 2 + 1   = 3 2

= R.H.S.

 

Q5. Find the value of:

(i) sin 75° (ii) tan 15°

A.5. (i) sin 75°= sin (45°+30°)

Using sin (x + y)= sin x cos y + cos x sin y we can write

sin 75°

 

Q9.  c o s ( 3 π 2 + x ) c o s ( 2 π + x ) [ c o t ( 3 π 2 x ) + c o t ( 2 π + x ) ] = 1

A.9.  = c o s ( 3 π 2 + x ) c o s ( 2 π + x ) [ c o t ( 3 π 2 x ) + c o t ( 2 π + x ) ]

Here,

c o s ( 3 π 2 + x ) = c o s ( 4 π π 2 + x ) = c o s ( 2 π π 2 + x )

= c o s [ 2 π ( π 2 x ) ] ;VI quadrant

c o s ( π 2 x ) ;Ist quadrant

= s i n x

c o s ( 2 x + x ) = c o s x , x  lies in Ist quadrant

c o t ( 2 π + x ) = c o t x ; x  lies in Ist quadrant

c o t ( 3 π 2 x ) = c o t [ 4 π π 2 x ]

= c o t [ 2 π π 2 x ]

= c o t [ 2 x ( π 2 + x ) ] ; VIth quadrant

= c o t ( π 2 + x ) ;IIndquadrant

= ( t a n x )

= t a n x .

So.  = s i n x c o s x [ t a n x + c o t x ]

= s i n x c o s x [ s i n x c o s x + c o s x s i n x ]

= s i n x c o s x ( s i n 2 x + c o s 2 x ) c o s x s i n x

= s i n 2 x + c o s 2 x

= 1

= R.H.S.

 

Q10. sin (n + 1)xsin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x

A.10.  = s i n ( x + 1 ) x s i n ( x + 2 ) x + c o s ( x + 1 ) x c o s ( x + 2 ) x .

= c o s ( x + 1 ) x c o s ( x + 2 ) x + s i n ( x + 1 ) x s i n ( x + 2 ) x .

Let A = ( n + 1 ) x B = ( n + 2 ) x .

So, L.H.S= c o sA c o sB + s i nA s i nB .

= c o s ( A B )

Putting values of A and B we get,

L.H.S c o s [ ( n + 1 ) x ( n + 2 ) x ]

= c o s [ n x + x n x 2 x ]

= c o s ( x )

= c o s x =R.H.S

 

Q11.  c o s ( 3 π 4 + x ) c o s ( 3 π 4 x ) = −√2 s i n x

A.11. L.H.S = c o s ( 3 π 4 + x ) c o s ( 3 π 4 x )

Using cos (A + B) = cos A cos B – sin A sin B

and cos (A – B) = cos A cos B + sin A sin B

L.H.S=[ c o s 3 π 4 c o s x s i n 3 π 4 s i n x ] [ c o s 3 π 4 c o s x + s i n 3 π 4 s i n x ]

= c o s 3 π 4 c o s x s i n 3 π 4 s i n x c o s 3 π 4 c o s x s i n 3 π 4 s i n x .

= 2 s i n 3 π 4 s i n x .

= 2 s i n ( 4 π π 4 ) s i n x .

= 2 s i n ( π π 4 ) s i n x ,I quadrant

= 2 s i n π 4 · s i n x = 2 π 1 · s i n x = s i n x =

 

Q12. sin26x – sin24x = sin 2x sin 10x

A.12.  = s i n 2 6 x s i n 2 4 x .

= ( s i n 6 x + s i n 4 x ) ( s i n 6 x s i n 4 x ) . [ a 2 b 2 = ( a b ) ( a + b ) ]

Using  s i nA + s i nB = 2 s i n A+B 2 Sin A−B 2

and  s i nA s i nB = 2 c o s A+B 2 s i n A−B 2

So,

L.H.S = ( 2 s i n ( 6 x + 4 x 2 ) c o s ( 6 x 4 x 2 ) ) ( 2 c o s ( 6 x + 4 x 2 ) s i n ( 6 x 4 x 2 ) )

= ( 2 s i n 1 0 x 2 c o s 2 x 2 ) ( 2 c o s 1 0 x 2 s i n 2 x 2 )

= 2 s i n 5 x c o s x 2 c o s 5 x s i n x

= 2 s i n 5 x c o s 5 x 2 c s i n x c o s x .

As  s i n 2 θ = 2 s i n θ c o s θ  we can write.

L.H.S = s i n ( 2 × 5 x ) = s i n ( 2 × x )

= s i n 1 0 x s i n 2 x =R.H.S

 

Q13. cos22x – cos26x = sin 4x sin 8x

A.13.  = c o s 2 2 x c o s 2 6 x

= ( c o s 2 x + c o s 6 x ) ( c o s 2 x c o s 6 x ) [ a 2 b 2 = ( a b ) ( a + b ) ]

Using  c o sA + c o sB = 2 c o s A+B 2 CosA−B 2

c o sA c o sB = 2 s i n A+B 2 s i n A−B 2

L.H.S= [ 2 c o s ( 2 x + 6 x 2 ) c o s ( 2 x 6 x 2 ) ] [ 2 s i n 2 x + 6 x 2 s i n ( 2 x 6 x 2 ) ]

= [ 2 c o s 8 x 2 c o s ( 4 x 2 ) ] [ 2 s i n ( 8 x 2 ) s i n ( 4 x 2 ) ]

= 2 c o s 4 x c o s 2 x × 2 s i n 4 x · s i n 2 x [ c o s ( x ) = c o s x ; s i n ( x ) = s i n x ]

= 2 s i n 4 x c o s 4 x × 2 s i n 2 x c o s 2 x

As sin 2Ø = 2 sin ØcosØ.

L.H.S. = sin (2× 4x) sin(2× 2x)

= sin 8x sin 4x

= R.H.S.

 

Q14. sin2 x + 2 sin 4x + sin 6x = 4 cos2x sin 4x

A.14. L.H.S. = sin 2x + 2 sin 4x + sin 6x

Using sin A + sin B = 2 sin A+B 2  cos  A−B 2  we have,

L.H.S. = (sin 2x + sin 6x) + 2 sin 4x

= 2 s i n ( 2 x + 6 x 2 ) c o s ( 2 x 6 x 2 ) + 2 s i n 4 x .

= 2 s i n 8 x 2 c o s ( 4 x 2 ) + 2 s i n 4 x .

= 2 s i n 4 x c o s 2 x + 2 s i n 4 x [ c o s ( x ) = x ]

= 2 s i n 4 x [ c o s 2 x + 1 ]

We know that,

c o s 2 x = 2 c o s 2 x 1

c o s 2 x + 1 = 2 c o s 2 x

Hence,

= 2 s i n 4 x ( 2 c o s 2 x )

= 4 c o s 2 x s i n 4 x

= R.H.S.

 

Q15. cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x)

A.15.  = c o t 4 x ( s i n 5 x + s i n 3 x )

= c o t 4 x [ 2 s i n ( 5 x + 3 x 2 ) c o s ( 5 x 3 x 2 ) ] [ s i n A + s i n B = 2 s i n A+B 2 c o s A−B 2 ]

= c o t 4 x [ 2 s i n 8 x 2 c o s 2 x 2 ]

= c o s 4 x 4 x × 2 s i n 4 x c o s x

= 2 · c o s 4 x · c o s x

R.H.S= c o t x [ s i n 5 x s i n 3 x ]

= c o t x [ 2 · c o s ( 5 x + 3 x 2 ) s i n ( 5 x 3 x 2 ) ] [ s i n A s i n B = 2 c o s A+B 2 s i n A−B 2 ]

= c o t x [ 2 c o s 8 x 2 · s i n 2 x 2 ]

= c o s x s i n x · 2 c o s 4 x s i n x

= 2 · c o s 4 x · c o s x .

Hence, L.H.S. = R.H.S.

 

Q16.  c o s 9 x c o s 5 x s i n 1 7 x s i n 3 x = s i n 2 x c o s 1 0 x

A.16. L.H.S = c o s 9 x c o s 5 x s i n 1 7 x s i n 3 x

= 2 s i n ( 9 x + 5 x 2 ) s i n ( 9 x 5 x 2 ) 2 c o s ( 1 7 x + 3 x 2 ) s i n ( 1 7 x 3 x 2 )

= s i n 1 4 x 2 s i n 4 x 2 c o s 2 0 x 2 s i n 1 4 x 2 = s i n 7 x s i n 2 x c o s 1 0 x s i n 7 x = s i n 2 x c o s 1 0 x

= R.H.S

 

Q17.  s i n 5 x + s i n 3 x c o s 5 x + c o s 3 x = t a n 4 x

A.17. L.H.S = s i n 5 x + s i n 3 x c o s 5 x + c o s 3 x .

= 2 s i n ( 5 x + 3 x 2 ) c o s ( 5 x 3 x 2 ) 2 c o s ( 5 x + 3 x 2 ) c o s ( 5 x 3 x 2 )

= s i n 8 x 2 c o s 2 x 2 c o s 8 x 2 c o s 2 x 2

= s i n 4 x c o s 4 x = t a n 4 x =R.H.S

 

Q18.  s i n x s i n y c o s x + c o s y = t a n x y 2

A.18. L.H.S = s i n x s i n y c o s x + c o s y

= 2 c o s x + y 2 s i n x y 2 2 c o s x + y 2 c o s x y 2

= s i n ( x y 2 ) c o s ( x y 2 )

= t a n ( x y 2 )  =R.H.S

 

Q19.  s i n x + s i n 3 x c o s x + c o s 3 x = t a n 2 x

A.19.  = s i n x + s i n 3 x c o s x + c o s 3 x

= 2 ( x + 3 x 2 ) c o s ( x 3 x 2 ) 2 c o s ( x + 3 x 2 ) c o s ( x 3 x 2 )

= s i n 4 x 2 c o s 4 x 2

= s i n 2 x c o s 2 x

= t a n 2 x =R.H.S

 

Q20.  s i n x s i n 3 x s i n 2 x c o s 2 x = 2 s i n x

A.20. L.H.S = s i n x s i n 3 x s i n 2 x c o s 2 x

= 2 c o s ( x + 3 x 2 ) s i n x 3 x 2 ( c o s 2 x s i n 2 x )

= 2 c o s 4 x 2 s i n ( 2 x 2 ) c o s 2 x [ c o s 2 x = c o s 2 x s i n 2 x ]

= 2 c o s 2 x s i n x c o s 2 x [ s i n ( x ) = s i n x ]

= 2 sin x

= R.H.S.

 

Q21.  c o s 4 x + c o s 3 x + c o s 2 x s i n 4 x + s i n 3 x + s i n 2 x = c o t 3 x

A.21. L.H.S = c o s 4 x + c o s 3 x + c o s 2 x s i n 4 x + s i n 3 x + s i n 2 x .

= ( c o s 4 x + c o s 2 x ) + c o s 3 x ( s i n 4 x + s i n 2 x ) + s i n 3 x .

= 2 c o s ( 4 x + 2 x 2 ) c o s ( 4 x 2 x 2 ) + c o s 3 x 2 s i n ( 4 x + 2 x 2 ) c o s ( 4 x 2 x 2 ) s i n 3 x .

= 2 c o s 6 x 2 c o s 2 x 2 + c o s 3 x 2 s i n 6 x 2 c o s 2 x 2 + s i n 3 x

= 2 c o s 3 x c o s x + c o s 3 x 2 s i n 3 x c o s x + 3 x

= c o s 3 x s i n 3 x × ( 2 c o s x + 1 ) ( 2 c o s x + 1 )

= c o t 3 x =R.H.S

 

Q22. cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1

A.22. L.H.S. = cot x cot 2x – cot 2x cot 3x – cot 3x cot x.

= cot x cot 2x – cot 3x (cot 2x + cot x)

= cot x cot 2x – (cot 2x + cot x)[cot (2x + x)]

We know that,

c o t (A +B ) = c o tA c o tB 1 c o tA + c o tB  we can write

L.H.S= c o t x c o t 2 x ( c o t 2 x + c o t x ) [ c o t 2 x · c o t x 1 c o t 2 x + c o t x ]

= cot x cot 2x – cot 2x cot x + 1

= 1

= R.H.S.

 

Q23.  t a n 4 x = 4 t a n x ( 1 t a n 2 x ) 1 6 t a n 2 x + t a n 4 x

A.23. L.H.S. = tan 4x

We know that,

t a n 2 = 2 t a n 1 t a n 2 .  , we can write

L.H.S= t a n 2 ( 2 x ) = 2 t a n 2 x 1 t a n 2 2 x .

= 2 ( 2 t a n x 1 t a n 2 x ) 1 ( 2 t a n x 1 t a n 2 x ) 2

= 4 t a n x ( 1 t a n 2 x ) ( 1 t a n 2 x ) 2 4 t a n 2 x ( 1 t a n 2 x ) 2

= 4 t a n x × ( 1 t a n 2 x ) 1 + t a n 4 x 2 t a n 2 x 4 t a n 2 x

= 4 t a n x ( 1 t a n 2 x ) 1 6 t a n 2 x + t a n 4 x

= R.H.S.

 

Q24. cos 4x = 1 – 8sin2x cos2x

A.24. L.H.S. = cos 4x.

= cos 2(2x)

= 1 – 2 Sin2(2x) [ cos 2x = 1 – 2 Sin2x]

= 1 – 2 [2 sin xcosx]2[ sin 2x = 2 sin xcos x]

= 1 – 2 [4 sin2xcos2x]

= 1 – 8 sin2xcos2x

= R.H.S.

 

Q25. cos 6x = 32 cos6x – 48cos4x + 18 cos2x – 1

A.25. L.H.S. = cos 6x

= cos 3(2x)

= 4 cos32x – 3 cos 2x                 [Q cos 3A = 4 cos3A – 3cos A]

= 4[(2 cos2x – 1)3] – 3[(2 cos2x – 1)]                      [Q cos 2x = 2 cos2x – 1]

= 4[(2 cos2x)3  + 3[(2 cos2x)2(–1) + 3(2 cos2x)(–1)2 + (–1)3] – 3(2 cos2x) + 3

{Q (a + b)3= a3 + b3 + 3a2b + 3ab2}

= 4[8 cos6x – 12 cos4x + 6cos2x – 1] – 6 cos2x + 3.

= 32 cos6x – 48 cos4x + 24 cos2x – 4 – 6cos2x + 3

= 32 cos6x – 48 cos4x + 18 cos2x – 1

= R.H.S.

 

Exercise 3.4

Find the principal and general solutions of the following equations:

sin  6 x 2  sin  2 x 2  = 0

sin 3x sin x = 0.

sin 3x = 0 or sin x = 0

3x = nπ or x = nπ, n € z,

x =  n π 3 or x = nπ, n € z,

 

Q6. cos 3x + cos x – cos 2x = 0

A.6. We have,

cos 3x + cosx-cos 2x = 0.

(cos 3x + cosx) cos 2x = 0

Using cos A + cos B = 2 cos A+B 2  cos  A-B 2

2 cos  ( 3 x + x 2 )  cos  ( 3 x x 2 ) - cos 2x = 0.

2 cos  4 x 2  cos  2 x 2 - cos 2x = 0

2 cos 2xcosx - cos 2x = 0

cos 2x. (2 cosx - 1) = 0.

cos 2x = 0 or 2 cosx -1 = 0.

2x = (2n + 1)  π 2 , n∈z or cosx =  1 2  = cos  π 3

x = (2n + 1)  π 4 , n∈z or x = 2nx±  π 3 , n∈z.

 

Q7. sin 2x + cos x = 0

A.7. We have,

sin 2x + cosx = 0.

2 sin cosx + cosx = 0(   sin 2x = 2 sin xcosx)

cosx (2 sin x + 1) = 0.

cosx = 0     or 2 sinx + 1 = 0.

x = (2n + 1)  π 2 , n∈z or sin x = 1 2 = -sin  π 6 = sin  π + π 6 = sin  7 π 6 .

x = (2n + 1)  π 2 , x∈z or x= nπ + (-1)n 7 π 6 ,  n∈z.

 

Q8. sec22x = 1– tan 2x

A.8. We have,

sec2 2x = 1 tan 2x

1 + tan2 2x = 1 tan 2x[ sec2x = 1 + tan2x]

tan2 2x + tan 2x = 0.

tan 2x (tan 2x + 1) = 0.

tan 2x = 0         or         tan 2x + 1 = 0.

2x = nπ, x∈z or tan 2x = -1 = -tan π 4 = tan π- π 4   = tan  3 π 4 .

x=  n π 2  , n∈z or 2x = nπ + 3 π 4  , n∈z.

x =  n π 2 + 3 π 8 ,  n∈z

 

Q9. sin x + sin 3x + sin 5x = 0

A.9. We have,

sinx + sin 3x + sin 5x = 0.

(sinx + sin 5x) + sin 3x = 0.

Using sin A + sin B = 2 sin  A+B 2  cos  A−B 2  .

2 sin  ( x + 5 x 2 )  cos  ( x 5 x 2 )  + sin 3x = 0.

2 sin  6 x 2 cos -4 x 2   + sin 3x = 0.

2 sin 3xcos (-2x) + sin 3x = 0.

sin 3x [2 cos 2x + 1] = 0[  cos (-x) = cosx].

sin 3x = 0 or 2 cos 2x + 1 = 0.

3x = nπ, n∈z. or cos 2x = -1 2 = -cos  π 3 = cos  π - π 3 = cos  2 π 3

x=  n π 3  , n∈z or 2x = 2nπ± 2 π 3  .

x = nπ± π 3  , n∈z.

 

Miscellaneous Exercise

Q1.  2 c o s π 1 3 c o s 9 π 1 3 + c o s 3 π 1 3 + c o s 5 π 1 3 = 0

A.1. L.H.S. = 2 cos π 1 3  cos  9 π 1 3  + cos  3 π 1 3  + cos  5 π 1 3 =∂ .

= 2 cos  π 1 3  cos  9 π 1 3  + 2 cos  ( 3 π 1 3 + 5 π 1 3 ) 2 ¯  cos  ( 3 π 1 3 5 π 1 3 ) 2

[ c o s A + c o s B = 2 c o s A + B 2 c o s A B 2 ]

= 2 cos  π 1 3  cos  9 π 1 3  + 2. cos  ( 8 π / 1 3 2 )  cos  ( 2 π / 1 3 2 )

= 2 cos  π 1 3  cos  9 π 1 3  + 2 cos  4 π 1 3  cos  π 1 3  [   cos (x) = cosx].

= 2 cos  π 1 3   [ c o s 9 π 1 3 + c o s 4 π 1 3 ] .

= 2 cos  π 1 3 [ 2 c o s ( 9 π 1 3 + 4 π 1 3 2 ) c o s ( 9 π 1 3 4 π 1 3 2 ) ]

= 2 cos  π 1 3   [ 2 · c o s ( 1 3 π / 1 3 2 ) c o s ( 5 π / 1 3 2 ) ]

= 2 cos  π 3 × 2 ×cos π 2 × cos 5 π 2 6  .

= 2 cos  π 2  2× 0×cos  5 π 2 6

= 0

= R.H.S.

 

Q2. (sin 3x + sin x) sin x + (cos 3x – cos x) cos x = 0

A.2. L.H.S = (sin 3x + sin x) + sin x + (cos 3x - cosx) cosx.

Using

Sin A + sin B = 2 sin  A + B 2  cos  A−B 2

cos A - cos B = -2 sin A+B 2  sin  A−B 2  .

L.H.S. =  ( 2 s i n 3 x + x 2 c o s 3 x x 2 )  sin x +  ( 2 s i n 3 x + x 2 s i n 3 x x 2 )  cosx

= 2 sin  4 x 2  cos  2 x 2 sin x -2 sin  4 x 2  sin  2 x 2  cosx.

= 2 sin 2xcosx sin x -2 sin 2x sin xcosx

= 0 = R.H.S.

 

Q3. (cos x + cos y)2 + (sin x – sin y)= 4 cos2 x + y 2

A.3. L.H.S. = (cos x + cos y)2 + (sin x- sin y)2

Using,

cos A + cos B = 2 cos  A+B 2 cos A−B 2

sin A - sin B = 2 cos A+B 2  sin  A B 2 .

L.H.S. =  [ 2 c o s x + y 2 c o s x y 2 ] 2 + [ 2 c o s x + y 2 s i n x y 2 ] 2  .

= 4. cos2 ( x + y 2 ) cos2 ( x y 2 ) .. + 4 cos2 ( x + y 2 ) sin2 ( x y 2 )  .

= 4 cos2 ( x + y 2 )   [ c o s 2 ( x y 2 ) + s i n 2 ( x y 2 ) ]

= 4 cos2 ( x + y 2 )  [  cos2∅+ sin2q∅  = 1].

= R.H.S.

L.H.S =

 

Q4. (cos x – cos y)2+ (sin x – sin y)2 = 4 sin2 x y 2

A.4. L.H.S = (cos x-cos y)2 + (sin x- sin y)2

[ 2 s i n x + y 2 s i n x y 2 ] 2 + [ 2 c o s x + y 2 s i n x y 2 ] 2

= 4 sin2 ( x + y 2 ) sin2 ( x y 2 ) + 4 cos2 ( x + y 2 ) sin2 ( x y 2 )

= 4 sin2 ( x y 2 )   [ s i n 2 ( x + y 2 ) + c o s 2 ( x + y 2 ) ]

= 4  s i n 2 ( x y 2 )  ..[  sin2∅ + cos2∅= 1]

= R.H.S.

 

Q5. sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x

A.5. L.H.S = sin x + sin 3x + sin 5x + sin 7x.

= (sin x + sin 7x) + (sin 3x + sin 5x)

Using,

sin A + sin B = 2 sin  A + B 2  cos  A B 2 .

L.H.S. = 2. Sin  x + 7 x 2  cos  x 7 x 2 + 2 sin 3 x + 5 x 2  cos  3 x 5 x 2

= 2 sin  8 x 2  cos  ( 6 x 2 )  + 2 sin  8 x 2  cos  ( 2 x 2 )

= 2 sin 4x cos 3x + 2 sin 4x cosx.[  cos (-x) = cosx]

= 2 sin 4x[cos 3x + cosx]

Using cos A + cos B = 2 cos  A + B 2  cos  A B 2 .

So, L.H.S. = 2 sin 4x  [ 2 · c o s 3 x + x 2 c o s 3 x x 2 ] .

= 2 sin 4x  [ 2 · c o s 4 x 2 · c o s 2 x 2 ]

= 4 sin 4x. cos 2x cosx = R.H.S.

 

Q6.  ( s i n 7 x + s i n 5 x ) + ( s i n 9 x + s i n 3 x ) ( c o s 7 x + c o s 5 x ) + ( c o s 9 x + c o s 3 x ) = t a n 6 x

A.6. L.H.S. = ( s i n 7 x + s i n 5 x ) + ( s i n 9 x + s i n 3 x ) ( c o s 7 x + c o s 5 x ) + ( c o s 9 x + c o s 3 x ) .

Using sin A + sin B = 2 sin  A + B 2  cos  A B 2

cos A + cos B = 2 cos  A + B 2  cos  A B 2 .

 

Q7. sin 3x + sin 2x – sin x = 4sin x c o s x 2 c o s 3 x 2

A.7. L.H.S = sin 3x + sin 2x - sin x

= sin 3x - sin x + sin 2x.

= 2 cos  3 x + x 2  .. sin  3 x x 2  + sin 2x  [ s i n A s i n B = 2 c o s A + B 2 s i n A B 2 ]

= 2 cos  4 x 2  sin  2 x 2  + sin 2x.

= 2 cos 2x sin x + 2 sin xcosx        [  sin 2x = 2sin xcosx]

= 2 sin x [cos 2x + cosx]

= 2 sin x  [ 2 c o s 2 x + x 2 c o s 2 x x 2 ]   [ c o s A + c o s B = 2 c o s A + B 2 c o s A B 2 ]

= 2 sin x  [ 2 . c o s 3 x 2 c o s x 2 ]

= 4 sin xcos  x 2  . cos  3 x 2  = R.H.S.

Find sin  x 2  , cos  x 2  and tan  x 2  in each of the following :

 

Q8. tan x = − 4 3  , x in quadrant II

A.8. We have, tan x= 4 3  , x in IInd quadrant.

Since,  π 2 < x < π

π 4 < x 2 < π 2

sin  x 2  , cos  x 2  , tan  x 2  are all positive.

Now, sec2x = 1 + tan2x = 1 + ( 4 3 ) 2  = 1 +  1 6 9  =  9 + 1 6 9  =  2 5 9

secx = ± 5 3

cosx = ± 3 5  .

cosx =  3 5 as x is in IInd quadrant.

Now, 2 sin2.. = 1 cosx.    [cos 2x = 1 2 sin2x.]

2 sin2 x 2  = 1  ( 3 5 )

2 sin2 x 2 =  1 + 3 5 5 + 3 5  =  8 5  .

sin2 x 2  =  8 2 × 5  =  4 5 .

 

Explore exams which ask questions on Ncert Solutions Maths class 11th

Select your preferred stream

News & Updates

Latest NewsPopular News
qna

Ncert Solutions Maths class 11th Exam

Student Forum

chatAnything you would want to ask experts?
Write here...