NCERT Solutions Class 11 Maths Principle of Mathematical Induction: Questions, Preparation

NCERT Maths 11th 2023 ( Ncert Solutions Maths class 11th )

Salviya Antony

Salviya AntonySenior Executive - Content

Updated on Dec 19, 2024 14:44 IST

NCERT Solutions for Class 11 Maths Principle of Mathematical Induction is given on this page. Students of Class 11 can use the NCERT Solutions Class 11 Maths Principle of Mathematical Induction as a perfect resource to prepare for the board exams. They can easily access the accurate solutions of Class 11 Maths Principle of Mathematical Induction here. These solutions are prepared with detailed explanation of steps. Students can also download NCERT Solutions Class 11 Maths Principle of Mathematical Induction PDF from this page. This chapter has been removed as per the latest update on the CBSE Syllabus. Class 11 Maths Chapter 4 solutions pdf download will be provided on this page. 

One key basis for mathematical thinking is deductive reasoning. The principle of mathematical induction is a tool which can be used to prove a wide variety of mathematical statements. The French mathematician Blaise Pascal is credited with the origin of the principle of mathematical induction. The exercises in this chapter covers problems related to the Principle of Mathematical Induction, along with its simple applications. Students can access out NCERT Solutions for free.

Principle of Mathematical Induction - Topics Covered

  • Motivation
  • Principle of Mathematical Induction

Check the NCERT Solutions Maths Class 11 Chapter 4 Principle of Mathematical Induction below.

Q 4.8 1.2 + 2.22 + 3.22 + … + n.2n = (n – 1)2n + 1 + 2

  • A 4.8
  • We can write the given statement as
  • P(n)=1.2 + 2.22 + 3.22 + … + n.2n = (n – 1) 2n+1+2
  • If n=1, we get
  •  P(1) =1.21
  •  =1.2 = 2 = (1 – 1) 2n+1+2
  •  =2
  • which is true.
  • Let us assume P(k) is true, for some positive integer k.
  • i.e.,1.2 + 2.22 + 3.22 + … + k.2k = (k – 1) 2k+1+2-------------------------(1)
  • Let us prove that P(k+1) is true,
  • 1.2 + 2.22 + 3.22 + … + k.2k + (k+1) 2k+1
  • By using (1),
  • =(k – 1) 2k+1+2+(k+1) 2k+1
  • =2k+1{(k – 1)+(k+1)}+2
  • =2k+1.2.k+2
  • =k.2k+1+1+2
  • ={(k+1) –1} 2(k+1)+1+2
  • ⸫ P(k+1) is true whenever P(k) is true. Hence, From P.M.I. the P(n) is true for all natural number n.

Q4.19 n(n+1)(n +5)  is a multiple of 3

A 4.19

We can write the given statement as

P(n): n(n +1)(n+5), which is multiple of 3.

If n= 1, we get

P(1)=1(1+1)(1+5)=12, which is a multiple of 3 which is true.

Consider P(k) be true for some positive integer k

k(k+1)(k+ 5) is a multiple of 3

k(k+1)(k+5)= 3 m, where m ∈ N (1)

Now, let us prove that P(k + 1) is true

Here, 

(k+ 1){(k+1)+ 1}{(k+1)+ 5}

We can write it as

=(k +1)(k+ 2){(k + 5) + 1}

By Multiplying the terms.

(k+1) (k+2) (k+5) + (k+1) (k+2)

{ k(k+1) ( k+5) + 2 (K+1) (K+5) } + (k+1) (k+2)

By eqn. (1)

 = 3m + 2 (k + 1)(k + 5) + (k + 1) (k + 2)

= 3m + (k + 1) {2 (k + 5) + (k +2)}

= 3m + (k + 1) {2k + 10 +k + 2}

= 3m + (k + 1) (3k +12)

= 3m + 3 (k + 1) (k+ 4)

=3{m + (k + 1) (k + 4)}

3  9 where 9 = {m+(k + 1) (k + 4)} is some natural number (k + 1){(k + 1) + 5} is multiple of 3.

P(k+1) is true whenever P(k) is true.

Therefore, by the principle of mathematical induction, statement P(n) is true for all natural number.

Q 4.24 2n+7<(n  3)2

A 4.24

Let P(n) be the statement “ 2n+7<(n+3)2

of n=1

P(1): 2 X 1 +7 < (1+3)2

9<42

9<16 which is true. This P(1) is true.

Suppose P(k) is true.

P(k)= 2k+7<(k+3)2     (1)

Lets prove that P(k +1) is also true.

“ 2(k + 1) + 7 < (k + 4)2=k2+ 8k + 16”

P(k +1) = 2(k +1) +7 = (2k +7) +2

< (k +3)2+ 2                  (Using 1)

= k2+ 9 + 6k +2 = k2+6k +11

Adding and subtracting (2k + k) in the R. H. S.

K2+6k+11+2k+5-(2k-5)

(k2-8k+16)-(2k-5)

(k+4)2-(2k-5)

(K+4)2, since 2k+5>0 for all k ∈ N

P (K+1) is true.

By the principle of mathematical induction, P(n) is true for all n ∈ N.

Download Here NCERT Class 11th Maths Chapter 4 Principle of Mathematical Induction Solutions PDF

NCERT Solutions For Class 11 Maths Principle of Mathematical Induction FAQs

Exercise. 4.1

Q.1. 1+3+32+ … +3n-1= ( 3 n 1 ) 2

A.1.       Let the given statement be P(n) i.e.,

              P(n): 1+3+32+ …+3n-1= ( 3 n 1 ) 2

For n=1, P(1)=1= ( 3 1 1 ) 2 = 3 1 2 = 2 2 = 1

which is true.

Assume that P(k) is true for some positive integer k i.e.,

1+3+32+ … +3k–1= ( 3 k 1 ) 2

--------(1)

Now, let us prove that P(k+1) is true.

Here, 1+3+32+ … +3k–1+3(k+1)–1

3 k 1 2 + 3 k + 1 1

[By using eq (1)]

3 k 1 + 2 ( 3 k + 1 1 ) 2

3 k + 2 . 3 k 1 2

3 k ( 1 + 2 ) 1 2

3 k · 3 1 2 = 3 k + 1 1 2

⸫P(k+1) is true whenever P(k) is true.

Hence, from the principle of mathematical induction, the P(n) is true for all natural numbers n.

 

Q2.  13+23+33+ … +n3= ( n ( n + 1 ) 2 ) 2

A.2. Let the given statement be P(n) i.e.,

P(n)=13+23+33+ … +n3= ( n ( n + 1 ) 2 ) 2

For, n=1, P(n)=13=1= ( 1 ( 1 + 1 ) 2 ) 2 = ( 1 . 2 2 ) 2 = 1 2 = 1

which is true.

Consider P(k) be true for some positive integer k

13+23+33+ … +k3= ( k ( k + 1 ) 2 ) 2  ---------- (1)

Now, let us prove that P(k+1) is true.

Here,  13+23+33+ … +k3+(k+1)3

By using eq (1)

( k ( k + 1 ) 2 ) 2 + ( k + 1 ) 3

k 2 ( k + 1 ) 2 + 4 · ( k + 1 ) 3 4

( k + 1 ) 2 [ k 2 + 4 ( k + 1 ) ] 4

( k + 1 ) 2 { k 2 + 4 k + 4 } 4 = ( k + 1 ) 2 ( k + 2 ) 2 4

{ ( k + 1 ) ( k + 1 + 1 ) 2 } 2

⸫P(k+1) is true whenever P(k) is true.

Hence, from the principle of mathematical induction, P(n) is true forall natural numbersn.

 

Q3.  1 + 1 ( 1 + 2 ) + 1 ( 1 + 2 + 3 ) + + 1 ( 1 + 2 + 3 + n ) = 2 n ( n + 1 )

A.3. Let the given statement be P(n) i.e.,

P(n): 1+  1 ( 1 + 2 ) + 1 ( 1 + 2 + 3 ) + + 1 ( 1 + 2 + 3 + n ) = 2 n ( n + 1 )

For n=1,

we get,P(1)=1=  2 . 1 1 + 1 = 2 2 = 1

which is true.

Let us assume that P(k) is true for some positive integer k.

i.e.,  1 + 1 1 + 2 + + 1 ( 1 + 2 + 3 + k ) = 2 k ( k + 1 )  ------------------ (1)

Which is true.

Now, let us prove that P(k + 1) is true.

1 + 1 1 + 2 + 1 1 + 2 + 3  + …  + 1 ( 1 + 2 + 3 + k ) + 1 1 + 2 + 3 + + k + ( k + 1 )

By using eqn (1)

2 k ( k + 1 )  +  1 ( 1 + 2 + 3 + k + 1 )

⸫We know that, 1+2+3+ … +n=  n ( n + 1 ) 2

So, we get

2 k k + 1  +  1 ( k + 1 ( k + 1 + 1 ) 2 )

2 k k + 1  +  2 ( k + 1 ) ( k + 2 )

2 k + 1 { k + 1 k + 2 }

2 ( k + 1 ) { k ( k + 2 ) + 1 k + 2 }

2 k + 1 { k 2 + 2 k + 1 k + 2 }

2 ( k 2 + 2 k + 1 ) k + 1 ( k + 2 )

2 ( k + 1 ) 2 ( k + 1 ) ( k + 2 )  =  2 ( k + 1 ) ( k + 1 + 1 )

⸫ P(k+1) is true whenever P(k) is true.

Hence, from the principle of mathematical induction, the P(n) is true for all a natural number n.

 

Q4.1.2.3 + 2.3.4 + … + n(n + 1) (n + 2) =  n ( n + 1 ) ( n + 2 ) ( n + 3 ) 4

A.4. Let the given statement be P(n) i.e.,

P(n): 1.2.3 + 2.3.4 + … + n (n + 1)(n + 2) =  n ( n + 1 ) ( n + 2 ) ( n + 3 ) 4

If n=1, we get

P(1): 1.2.3 = 6 =  1 ( 1 + 1 ) ( 1 + 2 ) ( 1 + 3 ) 4  =  1 . 2 . 3 . 4 4 = 6

which is true.

considerP(k) is true for some positive integer k

1.2.3 + 2.3.4 + … + k(k + 1)(k + 2) =  k ( k + 1 ) ( k + 2 ) ( k + 3 ) 4  -------------------(1)

Now, let us prove that P(k+1) is true.

Here,1.2.3 + 2.3.4 + … + k(k + 1)(k + 2) + (k + 1)(k + 2)(k + 3)

By eqn (1), we get,

k ( k + 1 ) ( k + 2 ) ( k + 3 ) 4 + ( k + 1 ) ( k + 2 ) ( k + 3 )

=(k+1)(k+2)(k+3)  [ k 4 + 1 ]

( k + 1 ) ( k + 2 ) ( k + 3 ) ( k + 4 ) 4

By further Simplification,

( k + 1 ) ( k + 1 + 1 ) ( k + 1 + 2 ) ( k + 1 + 3 ) 4

⸫ P(k+1)is true whenever P(k) is true.

Hence, from the principle of mathematical induction, the P(n) is true for all natural numbersn.

 

Q5.1.3 + 2.32 + 3.33 + … + n.3n = ( 2 n 1 ) 3 n + 1 + 3 4

A.5. Let the given statement be P(n) i.e.,

P(n)= 1.3 + 2.32 + 3.33 + … + n.3n = ( 2 n 1 ) 3 n + 1 + 3 4

If n=1, we get

P(1) = 1.3=3=  ( 2 . 1 1 ) 3 1 + 1 + 3 4  =  1 · 3 2 + 3 4  =  1 2 4  =3

which is true.

Consider P(k) be true for some positive integer k

1.3 + 2.32 + 3.33 + … + k3k = ( 2 k 1 ) 3 k + 1 + 3 4  ------------------(1)

Now, let us prove P(k+1) is true.

Here,

1.3 + 2.32 + 3.33 + … + k3k + (k + 1)3k + 1

By using eqn. (1)

( 2 k 1 ) 3 k + 1 + 3 4 + ( k + 1 ) 3 k + 1

L.C.M

( 2 k 1 ) 3 k + 1 + 3 + 4 · ( k + 1 ) 3 k + 1 4

3 k + 1 { 2 k 1 + 4 ( k + 1 ) } + 3 4

3 k + 1 { 2 k 1 + 4 k + 4 } + 3 4

3 k + 1 { 6 k + 3 } + 3 4

3 k + 1 · 3 ( 2 k + 1 ) + 3 4  =  3 k + 1 + 1 { 2 k + 1 } + 3 4  ⸫P(k+1) is true whenever P(k) is true.

Therefore, by the principle of mathematical induction statement P(n) is true for all natural numbers i.e., n.

 

Q6.1.2 + 2.3 + 3.4 + … + n (n + 1) =  [ n ( n + 1 ) ( n + 2 ) 3

A.6. Let the given statement be P(n) i.e.,

P(n)=1.2+2.3+3.4+ … +2(n+1)=  [ n ( n + 1 ) ( n + 2 ) 3 ]

For n=1,

P(1)=1.2=2=  1 ( 1 + 1 ) ( 1 + 2 ) 3  =  2 × 3 3  =2.

Which is true.

considerP(k) be true for some positive integer k

1.2 + 2.3 + 3.4 + … + k(k + 1) =  [ k ( k + 1 ) ( k + 2 ) 3 ]  --------------------(1)

Now, let us prove that P(k+1) is true.

Here, 1.2 + 2.3 + 3.4 + … + k(k + 1) + (k+1)(k+2)

By using (1), we get

k ( k + 1 ) ( k + 2 ) 3 + ( k + 1 ) ( k + 2 )

= (k+1)(k+2)  [ k 3 + 1 ]

( k + 1 ) ( k + 2 ) ( k + 3 ) 3

By further simplification;  ( k + 1 ) ( k + 1 + 1 ) ( k + 1 + 2 ) 3

P(k+1) is true whenever P(k) is true.

Therefore, by the principle of mathematical induction, statement P(n) is true for all natural no. i.e.,n.

 

Q7.1.3+3.5+5.7+ … +(2n – 1)(2n+1)=n  ( 4 n 2 + 6 n 1 )

A.7. Let the given statement be P(n) i.e.,

P(n)=1.3 + 3.5 + 5.7 + … + (2n – 1)(2n+1)=  n ( 4 n 2 + 6 n 1 ) 3

For,n = 1

P(1)=1.3=3=  1 ( 4 . 1 2 + 6 . 1 1 ) 3  =  4 + 6 1 3  =  9 3  =3

Which is true.

Assume that P(k) is true for some positive integer k i.e.,

1.3 + 3.5 + 5.7 + … + (2k – 1)(2k + 1) =  k ( 4 k 2 + 6 k 1 ) 3

Let us prove that P(k+1) is true,----------------------(1)

1.3 + 3.5 + 5.7 + … + (2k – 1(2k + 1) + [2(k + 1) –1] [2(k + 1) +1]

By (1),

k ( 4 k 2 + 6 k 1 ) 3  +(2k+2 – 1)(2k+2+1)

k ( 4 k 2 + 6 k 1 ) 3  +(2k+1)(2k+3)

k ( 4 k 2 + 6 k 1 ) 3 +4k2+6k+2k+3

L.C.M.

k ( 4 k 2 + 6 k 1 ) + 3 ( 4 k 2 + 8 k + 3 ) 3

4 k 3 + 6 k 2 k + 1 2 k 2 + 2 4 k + 9 3

4 k 3 + 1 8 k 2 + 2 3 k + 9 3

4 k 3 + 1 4 k 2 + 9 k + 4 k 2 + 1 4 k + 9 3

k ( 4 k 2 + 1 4 k + 9 ) + 1 ( 4 k 2 + 1 4 k + 9 ) 3

( k + 1 ) ( 4 k 2 + 1 4 k + 9 ) 3

( k + 1 ) { 4 k 2 + 8 k + 4 + 6 k + 6 1 } 3

( k + 1 ) { 4 ( k 2 + 2 k + 1 ) + 6 ( k + 1 ) 1 } 3

( k + 1 ) { 4 ( k + 1 ) 2 + 6 ( k + 1 ) 1 } 3

⸫ P(k+1) is true whenever P(k) is true.

Hence, from the principle of mathematical induction, the P(n) is true for all natural numbers n.

 

Q8.        1.2 + 2.22 + 3.22 + … + n.2n = (n – 1)2n + 1 + 2

A.8.        We can write the given statement as

              P(n)=1.2 + 2.22 + 3.22 + … + n.2n = (n – 1) 2n+1+2

              If n=1, we get

              P(1) =1.21

              =1.2 = 2 = (1 – 1) 2n+1+2

              =2

              which is true.

              Let us assume P(k) is true, for some positive integer k.

              i.e.,1.2 + 2.22 + 3.22 + … + k.2k = (k – 1) 2k+1+2                        -------------------------(1)

              Let us prove that P(k+1) is true,

              1.2 + 2.22 + 3.22 + … + k.2k + (k+1) 2k+1

              By using (1),

              =(k – 1) 2k+1+2+(k+1) 2k+1

              =2k+1{(k – 1)+(k+1)}+2

=2k+1{k – 1  +k+  1  }+2

=2k+1.2.k+2

=k.2k+1+1+2

={(k+1) –1} 2(k+1)+1+2

⸫ P(k+1) is true whenever P(k) is true. Hence, From P.M.I. the P(n) is true for all natural numbern.

 

Q9.  1 2 + 1 4 + 1 8 + + 1 2 n = 1 1 2 n

A.9. Let the given statement be P(n) l.e.,

P(n)=  1 2 + 1 4 + 1 8 + + 1 2 n = 1 1 2 n

If n=1, we get

P(1)=  1 2 = 1 1 2 1 = 1 2

which is true.

Consider P(k) be true for some positive integer k.

1 2 + 1 4 + 1 8 + + 1 2 k = 1 1 2 k  (1)

Now, let us prove that P(k+1) is true.

Here,  1 2 + 1 4 + 1 8 + + 1 2 k + 1 2 k + 1

By using eqn. (1)

( 1 1 2 k ) + 1 2 k + 1

we can write as,

1 1 2 k + 1 2 k . 2

1 1 2 k ( 1 1 2 )

1 1 2 k ( 1 2 )

It can be written as,=  1 1 2 k + 1

P(k + 1) is true whenever P(k) is true.

Hence, From the principle of mathematical induction the P(n) is true for all natural number n.

 

Q10.  1 2 . 5 + 1 5 . 8 + 1 8 . 1 1 + + 1 ( 3 n 1 ) ( 3 n + 2 ) = n ( 6 n + 4 )

A.10. Let the given statement be P(n) i.e.,

P ( n ) = 1 2 . 5 + 1 5 . 8 + 1 8 . 1 1 + + 1 ( 3 n 1 ) ( 3 n + 2 ) = n ( 6 n + 4 )

For n=1,

P(1)=  1 2 . 5 = 1 1 0 = 1 6 . 1 + 4 = 1 1 0

which is true.

Assume that P(k) is true for some positive integer k.

i.e.,P(k)=  1 2 . 5 + 1 5 . 8 + 1 8 . 1 1 + + 1 ( 3 k 1 ) ( 3 k + 2 ) = k ( 6 k + 4 )  (1)

Now, let us prove P(k+1) is true,

Here,  1 2 . 5 + 1 5 . 8 + 1 8 . 1 1  + … +  1 ( 3 k 1 ) ( 3 k + 2 ) + 1 ( 3 ( k + 1 ) 1 ) [ 3 ( k + 1 ) + 2 ]

By using eqn.(1),

k 6 k + 4 + 1 ( 3 k + 3 1 ) ( 3 k + 3 + 2 )

k 6 k + 4 + 1 ( 3 k + 2 ) ( 3 k + 5 )

Taking 2 as common,

k 2 ( 3 k + 2 ) + 1 ( 3 k + 2 ) ( 3 k + 5 )

1 ( 3 k + 2 ) { k 2 + 1 ( 3 k + 5 ) }

1 ( 3 k + 2 ) { k ( 3 k + 5 ) + 2 2 ( 3 k + 5 ) }

1 ( 3 k + 2 ) { 3 k 2 + 5 k + 2 6 k + 1 0 2 ( 3 k + 5 ) }

1 ( 3 k + 2 ) { 3 k 2 + 3 k + 2 k + 2 2 ( 3 k + 5 ) }  =  1 ( 3 k + 2 ) { 3 k ( k + 1 ) + 2 ( k + 1 ) 2 ( 3 k + 5 ) }

1 ( 3 k + 2 ) { ( 3 k + 2 ) ( k + 1 ) 2 ( 3 k + 5 ) }

( k + 1 ) 6 k + 1 0  , so we get

( k + 1 ) 6 ( k + 1 ) + 4

P(k+1) is true whenever P(k) is true.

Hence, from the principle of mathematical induction, the P(n) is true for all natural number.

 

Q11.  1 1 . 2 . 3 + 1 2 . 3 . 4 + 1 3 . 4 . 5  + … +  1 n ( n + 1 ) ( n + 2 ) = n ( n + 3 ) 4 ( n + 1 ) ( n + 2 )

A.11. we can write the given statement as

P ( n ) = 1 1 . 2 . 3 + 1 2 . 3 . 4 + 1 3 . 4 . 5  + … +  1 n ( n + 1 ) ( n + 2 )  =  n ( n + 3 ) 4 ( n + 1 ) ( n + 2 )

If n=1,

P(1)=  1 1 . 2 . 3  =  1 6  =  1 ( 1 + 3 ) 4 ( 1 + 1 ) ( 1 + 2 )  =  4 4 × 2 × 3  =  1 6

which is true.

Consider P(k) be true for some positive integer k

1 1 . 2 . 3 + 1 2 . 3 . 4 + 1 3 . 4 . 5  + … +  1 k ( k + 1 ) ( k + 2 )  =  k ( k + 3 ) 4 ( k + 1 ) ( k + 2 )

Let us prove that P(k+1) is true,

1 1 . 2 . 3 + 1 2 . 3 . 4 + 1 3 . 4 . 5  + … +  1 k ( k + 1 ) ( k + 2 ) + 1 ( k + 1 ) ( k + 2 ) ( k + 3 )  .

By equation (1), we get

k ( k + 3 ) 4 ( k + 1 ) ( k + 2 ) + 1 ( k + 1 ) ( k + 2 ) ( k + 3 )

1 ( k + 1 ) ( k + 2 ) [ k ( k + 3 ) 4 + 1 ( k + 3 ) ]

1 ( k + 1 ) ( k + 2 ) [ k ( k + 3 ) 2 + 4 4 ( k + 3 ) ]

1 ( k + 1 ) ( k + 2 ) [ k ( k 2 + 6 k + 9 ) + 4 4 ( k + 3 ) ]

1 ( k + 1 ) ( k + 2 ) { k 3 + 6 k 2 + 9 k + 4 4 ( k + 3 ) }

1 ( k + 1 ) ( k + 2 ) { k 3 + 2 k 2 + k + 4 k 2 + 8 k + 4 4 ( k + 3 ) }

1 ( k + 1 ) ( k + 2 ) { k ( k 2 + 2 k + 1 ) + 4 ( k 2 + 2 k + 1 ) 4 ( k + 3 ) }

1 ( k + 1 ) ( k + 2 ) { k ( k + 1 ) 2 + 4 ( k + 1 ) 2 4 ( k + 3 ) }

( k + 1 ) 2 ( k + 4 ) 4 ( k + 1 ) ( k + 2 ) ( k + 3 )

( k + 1 ) 2 { ( k + 1 ) + 3 } 4 ( k + 1 ) ( k + 2 ) ( k + 3 )  =  ( k + 1 ) { ( k + 1 ) + 3 } 4 { ( k + 1 ) + 1 } { ( k + 1 ) + 2 }

P(k+1) is true whenever P(k) is true.

Hence, By the principle of mathematical induction, the P(n) is true for all natural number n.

 

Q12. a+ar+ar2+ … +arn-1= a ( r n 1 ) r 1

A.12. Let the given statement be P(n) i.e.,

P(n)=a+ar+ar2+ … +arn-1== a ( r n 1 ) r 1

If n = 1, we get

P(1)=a=  a ( r 1 1 ) r 1  =a

which is true.

Consider P(k) be true for some positive integer k

a+ar+ar2+ … +ark-1= a ( r k 1 ) r 1  (1)

Now, let us prove that P(k+1) is true.

Here, {a+ar+ar2+ … +ark-1}+ar(k+1) –1

By using (1),

a ( r k 1 ) r 1 + a r k

a ( r k 1 ) + a r k ( r 1 ) r 1

a r k a + a r k + 1 a r k r 1

a r k + 1 a r 1

a ( r k + 1 1 ) r 1

P(k+1) is true whenever P(k) is true.

Therefore, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e.,

 

Q.13.  ( 1 + 3 1 ) ( 1 + 5 4 ) ( 1 + 7 9 )  …  ( 1 + ( 2 n + 1 ) n 2 ) = ( n + 1 ) 2

A.13. We can write given statement as

P(n):  ( 1 + 3 1 ) ( 1 + 5 4 ) ( 1 + 7 9 )  …  ( 1 + ( 2 n + 1 ) n 2 ) = ( n + 1 ) 2

If n=1, we get

P(1):  ( 1 + 3 1 ) =4=(1+ 1)2=22=4

which is true.

Consider P(k) be true for some positive integer k.

( 1 + 3 1 ) ( 1 + 5 4 ) ( 1 + 7 9 )  …  ( 1 + ( 2 k + 1 ) k 2 ) = ( k + 1 ) 2  (1)

Now, let us prove that P(k+1) is true.

( 1 + 3 1 ) ( 1 + 5 4 ) ( 1 + 7 9 )  …  ( 1 + ( 2 k + 1 ) k 2 ) + ( 1 + ( 2 ( k + 1 ) + 1 ) ( k + 1 ) 2 )

By using (1)

=(k+1)2 ( 1 + 2 ( k + 1 ) + 1 ( k + 1 ) 2 )

=(k+1)2 [ ( k + 1 ) 2 + 2 ( k + 1 ) + 1 ( k + 1 ) 2 ]

=(k+1)2+2(k+1)+1

={(k+1)+1}2

P(k+1) is true whenever P(k) is true.

Therefore, by principle of mathematical induction, the P(n) is true for all natural number n.

 

Q14.  ( 1 + 1 1 ) ( 1 + 1 2 ) ( 1 + 1 3 )  …  ( 1 + 1 n ) = ( n + 1 )

A.14. Let the given statement be P(n) i.e.,

P(n)=  ( 1 + 1 1 ) ( 1 + 1 2 ) ( 1 + 1 3 )  …  ( 1 + 1 n ) = ( n + 1 )

If n =1

P(1)=  ( 1 + 1 1 )  = 2 =1+1= 2

which is true.

Assume that P(k) is true for some positive integer k i.e.,

P(k):  ( 1 + 1 1 ) ( 1 + 1 2 ) ( 1 + 1 3 )  …  ( 1 + 1 k ) = ( k + 1 )  .---------------------(1)

Now, let us prove that P(k+1) is true.

Here,

P(k+1)=  ( 1 + 1 1 ) ( 1 + 1 2 ) ( 1 + 1 3 )  …  ( 1 + 1 k ) + ( 1 + 1 ( k + 1 ) )

By using (1), we get

(k+1).  ( 1 + 1 k + 1 )

L.C.M.=(k+1).  ( k + 1 + 1 k + 1 )

= (k+1)+1

⸫ P(k+1) is true whenever P(k) is true.

Therefore from the principle of mathematical induction the P(n) is true for all natural numbers n.

 

Q15. 12+32+52+ … + (2n – 1)2= ( 2 n 1 ) ( 2 n + 1 ) 3

A.15. We can write the given statement as

P(n)=12+32+52+ … + (2n – 1)2= n ( 2 n 1 ) ( 2 n + 1 ) 3

forn=1

P(1)=12=1= 1 ( 2 . 1 1 ) ( 2 . 1 + 1 ) 3

1 ( 1 ) ( 3 ) 3 = 1  which is true.

Consider P(k) be true for some positive integer k

P(k)=12+32+52+ … + (2n – 1)2= k ( 2 k 1 ) ( 2 k + 1 ) 3  ------------------(1)

Now, let us prove that P(k+1) is true.

Here,

12+32+52+ … +(2k – 1)2+(2(k+1) –1)2

By using (1),

k ( 2 k 1 ) ( 2 k + 1 ) 3 + [ 2 k + 2 1 ) 2

k ( 2 k 1 ) ( 2 k + 1 ) + 3 ( 2 k + 1 ) 2 3

( 2 k + 1 ) [ k ( 2 k 1 ) + 3 ( 2 k + 1 ) ] 3

( 2 k + 1 ) ( 2 k 2 k + 6 k + 3 ) 3

( 2 k + 1 ) ( 2 k 2 + 5 k + 3 ) 3

we can write as,

( 2 k + 1 ) ( 2 k 2 + 2 k + 3 k + 3 ) 3

( 2 k + 1 ) { 2 k ( k + 1 ) + 3 ( k + 1 ) } 3

( 2 k + 1 ) ( 2 k + 3 ) ( k + 1 ) 3

( 2 k + 1 ) ( k + 1 ) ( 2 k + 3 ) 3

( k + 1 ) { 2 ( k + 1 ) 1 } { 2 ( k + 1 ) + 1 } 3

P(k+1) is true whenever P(k) is true.

Hence, from the principle of mathematical induction, the P(n) is true for all natural number n.

 

Q16.  1 1 . 4 + 1 4 . 7 + 1 7 . 1 0  + … +  1 ( 3 n 2 ) ( 3 n + 1 )  =  n ( 3 n + 1 )

A.16. Let the given statement as

P(n)=  1 1 . 4 + 1 4 . 7 + 1 7 . 1 0  + … +  1 ( 3 n 2 ) ( 3 n + 1 ) = n ( 3 n + 1 )

If n=1, then

P(1)=  1 1 . 4  =  1 4  =  1 ( 3 . 1 + 1 )  =  1 4

which is true.

Consider P(k)be true for some positive integer k

P(k)=  1 1 . 4 + 1 4 . 7 + 1 7 . 1 0  + … +  1 ( 3 k 2 ) ( 3 k + 1 )  =  k ( 3 k + 1 )  ------------------(1)

Now, let us prove P(k+1) is true.

P(k+1)=  1 1 . 4 + 1 4 . 7 + 1 7 . 1 0  + … +  1 ( 3 k 2 ) ( 3 k + 1 ) + 1 [ 3 ( k + 1 ) 2 ] [ 3 ( k + 1 ) + 1 ]

By using (1),

k ( 3 k + 1 ) + 1 ( 3 k + 3 2 ) ( 3 k + 3 + 1 )

k ( 3 k + 1 ) + 1 ( 3 k + 1 ) ( 3 k + 4 )

1 ( 3 k + 1 ) { k + 1 3 k + 4 }

1 ( 3 k + 1 ) { k ( 3 k + 4 ) + 1 3 k + 4 }

1 ( 3 k + 1 ) { 3 k 2 + 4 k + 1 3 k + 4 }

1 ( 3 k + 1 ) { 3 k 2 + 3 k + k + 1 3 k + 4 }

1 ( 3 k + 1 ) { 3 k ( k + 1 ) + ( k + 1 ) 3 k + 4 }

1 ( 3 k + 1 ) ( 3 k + 1 ) ( k + 1 ) 3 k + 4

k + 1 3 k + 4 = k + 1 3 ( k + 1 ) + 1

⸫ P(k+1) is true whenever P(k) is true.

Therefore, from the principle of mathematical induction, the P(n) is true for all natural number n.

 

Q17.  1 3 5 + 1 5 7 + 1 7 9 + + 1 ( 2 n + 1 ) ( 2 n + 3 ) = n 3 ( 2 n + 3 )

A.17. We can write the given statement as:-

1 3 5 + 1 5 7 + 1 7 9 + + 1 ( 2 n + 1 ) ( 2 n + 3 ) = n 3 ( 2 n + 3 )

For n = 1,

We get  P ( 1 ) = 1 3 5 = 1 1 5 = 1 3 ( 2 1 + 3 ) = 1 3 ( 2 + 3 ) = 1 3 × 5 = 1 1 5

Which is true.

Consider P(k) be true for some positive integer k.

P ( K ) = 1 3 5 + 1 5 7 + 1 7 9 + + 1 ( 2 k + 1 ) ( 2 k + 3 ) = k 3 ( 2 k + 3 )  (1)

Now, let us prove that P(k+ 1) is true.

Now,

P(k +1) =  1   1 3 . 5 + 1 5 . 7 + 1 7 . 9 + . . . + 1 ( 2 k + 1 ) ( 2 k + 3 ) + 1 [ 2 ( k + 1 ) + 1 ] [ 2 ( k + 1 ) + 3 ]

By using (1),

= k 3 ( 2 k + 3 ) + 1 ( 2 k + 2 + 1 ) ( 2 k + 2 + 3 ) = k 3 ( 2 k + 3 ) + 1 ( 2 k + 3 ) ( 2 k + 5 ) = 1 ( 2 k + 3 ) [ k 3 + 1 ( 2 k + 5 ) ] = 1 ( 2 k + 3 ) [ k ( 2 k + 5 ) + 3 3 ( 2 k + 5 ) ]

= 1 ( 2 k + 3 ) [ 2 k 2 + 5 k + 3 3 ( 2 k + 5 ) ]

1 2 k + 3 [ 2 k 2 + 2 k + 3 k + 3 3 ( 2 k + 5 ) ]

= 1 2 k + 3 { 2 k ( k + 1 ) + 3 ( k + 1 ) 3 ( 2 k + 1 ) }

= 1 ( 2 k + 3 ) ( 2 k + 3 ( k + 1 ) ( 2 k + 1 ) 3 = k + 1 3 ( 2 k + 5 ) = ( k + 1 ) 3 { 2 ( k + 1 ) + 3 }

P(k+ 1) is true wheneverP(k) is true.

Therefore, from the principle of mathematical induction, theP(n) is true for all natural number n.

 

Q18.  1 + 2 + 3 + + n < 1 8 ( 2 n + 1 ) 2

A.18. We can write the given statement as

p ( n ) : 1 + 2 + 3 + + n < 1 8 ( 2 n + 1 ) 2

If n = 1, we get,

 P(1): 1 <  1 8 (2k + 1)2= 1<  1 8 (3)2

= 1 <  9 8

Which is true.

Consider P(k) be true some positive integer k

1+ 2 + ….. + k<  1 8 (2k + 1)2                                                  (1)

Let us prove P(k +1) is true.

Here,

(1 + 2 +…. k)+ (k +1) <  1 8 (2k + 1)2+ (k +1)

By using (1),

< 1 8 { ( 2 k + 1 ) 2 + 8 ( k + 1 ) }

< 1 8 { ( 2 k ) 2 + 2 2 k + 1 2 + 8 k + 8 }

< 1 8 { 4 k 2 + 4 k + 1 + 8 k + 8 }

< 1 8 { 4 k 2 + 1 2 k + 9 }

So, we get,

1 8 {2k+ 3}2

1 8 {2(k +1) +1}2

(1 + 2 + 3 + … + k) + (k + 1) <  1 8 (2k +1)2+ (k +1)

P(k + 1) is true whenever P(k) is true.

 Hence, from the Principle of mathematical induction, the P(k) is true for all natural numbern.

 

Q19. n(n+1)(n +5) is a multiple of 3.

A.19. We can write the given statement as

P(n): n(n +1)(n+5), which is multiple of 3.

If n= 1, we get

P(1)=1(1+1)(1+5)=12, which is a multiple of 3 which is true.

Consider P(k) be true for some positive integer k

k(k+1)(k+ 5) is a multiple of 3

k(k+1)(k+5)= 3 m, where  m N  (1)

Now, let us prove that P(k + 1) is true

Here,

(k+ 1){(k+1)+ 1}{(k+1)+ 5}

We can write it as

=(k +1)(k+ 2){(k + 5) + 1}

By Multiplying the terms.

= ( k + 1 ) ( k + 2 ) ( k + 5 ) + ( k + 1 ) ( k + 2 )

= { k ( k + 1 ) ( k + 5 ) + 2 ( k + 1 ) ( k + 5 ) } + ( k + 1 ) ( k + 2 )

By eqn. (1)

= 3m + 2 (k + 1)(k + 5) + (k + 1) (k + 2)

= 3m + (k + 1) {2 (k + 5) + (k +2)}

= 3m + (k + 1) {2k + 10 +k + 2}

= 3m + (k + 1) (3k +12)

= 3m + 3 (k + 1) (k+ 4)

=3{m + (k + 1) (k + 4)}

×  9 where 9 = {m+(k + 1) (k + 4)} is some natural number (k + 1){(k + 1) + 5} is multiple of 3.

P(k+1) is true whenever P(k) is true.

Therefore, by the principle of mathematical induction, statement P(n) is true for all natural number.

 

Q20.  1 0 2 n 1 +  1 is divisible by 11.

A.20. LetP(n): 1 0 2 n 1 +  1 is divisible by 11.

Putting n = 1

P ( 1 ) = 1 0 + 1 = 1 1  is divisible by 11.

Which is true. Thus, P(1) is true.

Let us assume that P(k) is true for some natural no. k.

P(k)=  1 0 2 k 1 +

1 is divisible by 11.

1 0 2 k 1 + 1 = 1 1 a a z

1 0 2 k 1 = 1 1 a 1  (1)

we want to prove that P(k +1) is true.

P ( k + 1 ) : 1 0 2 ( K + 1 ) 1 + 1 = 1 0 2 k + 1 + 1 is divisible by 11.

1 0 2 k + 1 + 1 = 1 0 ( 2 k 1 ) + 2 + 1

= 1 0 2 k 1 1 0 2 + 1

= 1 0 0 ( 1 1 a 1 ) + 1 (using(1) )

=1100a   99= 11(100a   9)

11bwhere b= (100a   9)  z

1 0 2 k + 1 + 1  is divisible by 11.

P ( k + 1 )

 is true when p(k) is true.

Hence by P.M.I. P(n) is true for every positive integer.

 

Q21.  x 2 x y 2 x is divisible by x + y

A.21.  Let  P ( n ) : x 2 n y 2 n is divisible by x + y

Putting x = 1 ,

P ( 1 ) = x 2 y 2 is divisible by x + y  or

( x + y ) ( x y )isdivisibleby x + y ,  which is true.

Assume that P(k) is true for some natural no. k

P ( k ) = x 2 k y 2 k  is divisible by x + y

i.e.  x 2 k y 2 k = a ( x + y )  where  z

x 2 k = a ( x + y ) + y 2 k  (1)

Now, let us prove P(k +1) is true.

P ( k + 1 ) : x 2 ( k + 1 ) y 2 ( k + 1 )

= x 2 x + 2 y 2 x + 2

= x 2 x 2 k y 2 y 2 k

= x 2 [ a ( x + y ) + y 2 k ] y 2 y 2 k [using(1)
]

= a x 2 ( x + y ) + x 2 y 2 k y 2 y 2 k

= a x 2 ( x + y ) + y 2 k ( x 2 y 2 )

= a x 2 ( x + y ) + y 2 k ( x + y ) ( x y )

= ( x + y ) [ a x 2 + y 2 k ( x y ) ]

= b ( x + y )where b = [ a x 2 + y 2 k ( x y ) ] z

x 2 k + 2 y 2 k + 2 is divisible by x + y

 P(k+ 1is true where P (k) is true.

Hence, by P.M.I. P(n) is true for all natural number i.e.,

 

Q22.  3 2 n + 2 8 n 9  is divisible by 8

A.22. Let P(n): 3 2 n + 2 8 n 9  is divisible by 8

put n= 1,

P(1):  3 2 + 2 8 . 1 9

34 – 8 – 9 = 81– 17 = 64= is divisible by 8

Which is true.

Assume that P(k) is true for some natural numbers k.

i.e,  3 2 k + 2 8 k 9  be divisible by 8

3 2 k + 2 8 k 9 = 8 a  where,a  z

3 2 k + 2 = 8 a + 8 k + 9  (1)

We want to prove thatP(k+ 1) is true.

P ( k + 1 ) : 3 2 ( k + 1 ) + 2 8 ( k + 1 ) 9  is divisible by 8, is also true.

Now,

3 2 k + 2 + 2 = 8 ( k + 1 ) 9

3 2 k + 4 8 k + 8 9

3 ( 2 k + 2 ) + 2 8 k + 8 9

3(2k +2). 32  8k   17

= 9 ( 8 a + 8 k + 9 ) 8 k 1 7  (Using 1)

= 7 2 a + 7 2 k + 8 1 8 k 1 7

= 72a + 64k+ 64 = 8(9a + 8k + 8)

= 8b,

Where b = 9a + 8b + 8  a z

32k + 4– 8(k+1) – 9 is divisible by 8.

 P(k+1) is true when P(k) is true. Hence, By P.M.I. P(n) is true for all positive integer n.

 

Q23.  4 1 2 1 4 2  is a multiple of 27

A.23. Let  P ( n ) : 4 1 n 1 4 n is a multiple of 27.

Put n= 1,

P ( 1 ) = 4 1 1 4 = 2 7  is a multiple of 27.

Which is true.

Assume that P(k) is true for some natural no. k.

P(k)=  4 1 k 1 4 k  be a multiple of 27

i.e,  4 1 k 1 4 k = 2 7 a , a z

4 1 k = 2 7 a + 1 4 k  (1)

We want to prove that P(k+1) is also true.

Now,

P ( k + 1 ) = 4 1 k + 1 1 4 k + 1

= 4 1 k 4 1 1 4 1 4 k

= 4 1 ( 2 7 a + 1 4 k ) 1 4 1 4 k  (Using 1)

= 4 1 × 2 7 a + 4 1 1 4 k 1 4 1 4 k

= 2 7 ( 2 4 + a + 1 4 k ) = 4 1 × 2 7 a + 1 4 k ( 4 1 1 4 )

= 4 1 × 2 7 a + 2 7 1 4 k

= 2 7 ( 4 1 a + 1 4 k )

= 2 7 b ,where b = ( 4 1 a + 1 4 k ) z

4 1 k + 1 1 4 k + 1 is multiple of 2 7

P ( k + 1 )  is true when P(k) is true.

Hence, by P.M.I. P(n) is true for every positive integer n.

 

Q24.2n+7<(n  3)2

A.24. Let P(n) be the statement “ 2n+7<(n+3)2”

ofn=1

P(1): 2  × 1 + 7 < ( 1 + 3 ) 2

9 < 4 2

9<16 which is true. This P(1) is true.

Suppose P(k) is true.

P(k)= 2k+7<(k+3)2                                   (1)

Lets prove that P(k +1) is also true.

“ 2(k + 1) + 7 < (k + 4)2=k2+ 8k + 16”

P(k +1) = 2(k +1) +7 = (2k +7) +2

  < (k +3)2+ 2                  (Using 1)

= k2+ 9 + 6k +2 = k2+6k +11

Adding and subtracting (2k + k) in the R. H. S.

= k 2 + 6 k + 1 1 + 2 k + 5 ( 2 k 5 )

= ( k 2 8 k + 1 6 ) ( 2 k 5 )

= ( k + 4 ) 2 ( 2 k 5 )

< ( k + 4 ) 2 ,since 2 k + 5 > 0 for all k N

P ( k + 1 )  is true.

By the principle of mathematical induction, P(n)is true for all n   N.

 

Explore exams which ask questions on Ncert Solutions Maths class 11th

Select your preferred stream

News & Updates

Latest NewsPopular News
qna

Ncert Solutions Maths class 11th Exam

Student Forum

chatAnything you would want to ask experts?
Write here...